import gradio as gr import numpy as np import random import torch from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images import modal import random import io from config.config import prompts, models # Indirect import import os import sentencepiece from huggingface_hub import login from transformers import AutoTokenizer from datetime import datetime CACHE_DIR = "/model_cache" # Define the Modal image image = ( modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") .pip_install_from_requirements("requirements.txt") #modal.Image.debian_slim(python_version="3.9") # Base image # .apt_install( # "git", # ) # .pip_install( # "diffusers", # f"git+https://github.com/huggingface/transformers.git" # ) .env( { "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR } ) ) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Create a Modal app app = modal.App("img-gen-modal-live-example3", image=image) with image.imports(): import os flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume # GPU FUNCTION @app.function(volumes={"/data": flux_model_vol}, secrets=[modal.Secret.from_name("huggingface-token")], gpu="L40S", timeout = 300 ) def infer(prompt="horse on the moon", seed=42, randomize_seed=False, width=640, height=360, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("/data/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained("/data/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained("/data/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) torch.cuda.empty_cache() pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, ): yield (img, seed) examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ # print("Initializing HF TOKEN") # hf_token = os.environ["HF_TOKEN"] # print(hf_token) # print("HF TOKEN:") # login(token=hf_token) with gr.Blocks(css=css) as demo: f = modal.Function.from_name("img-gen-modal-live-example3", "infer") with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=640, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=360, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = f.remote, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = f.remote_gen, inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()