Andre commited on
Commit
af7831d
·
1 Parent(s): 9e5d569

“Update”

Browse files
app.py CHANGED
@@ -3,6 +3,7 @@ import sys
3
  import os
4
 
5
  # Add the src folder to the Python path
 
6
  src_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))
7
  if src_path not in sys.path:
8
  sys.path.append(src_path)
 
3
  import os
4
 
5
  # Add the src folder to the Python path
6
+ # Solves all problems w subfolders - option2
7
  src_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))
8
  if src_path not in sys.path:
9
  sys.path.append(src_path)
config/config.py CHANGED
@@ -1,13 +1,9 @@
1
  # config.py
2
  import os
3
  from src.prompts import prompts # Import prompts from prompts.py
 
4
 
5
  # Retrieve the Hugging Face token
6
- #try:
7
- # Try to get the token from Colab secrets
8
- # api_token = userdata.get("HF_CTB_TOKEN")
9
- #except ImportError:
10
- # Fall back to environment variable (for local execution)
11
  api_token = os.getenv("HF_CTB_TOKEN")
12
 
13
  # Debugging: Check if the Hugging Face token is available
@@ -17,12 +13,6 @@ else:
17
  print("Hugging Face token loaded successfully.")
18
 
19
 
20
- # List of models with aliases
21
- models = [
22
- {"alias": "FLUX.1-dev", "name": "black-forest-labs/FLUX.1-dev"},
23
- {"alias": "Midjourney", "name": "strangerzonehf/Flux-Midjourney-Mix2-LoRA"}
24
- ]
25
-
26
  # Debugging: Print prompt and model options
27
  print("Prompt Options:", [p["alias"] for p in prompts])
28
  print("Model Options:", [m["alias"] for m in models])
 
1
  # config.py
2
  import os
3
  from src.prompts import prompts # Import prompts from prompts.py
4
+ from config.models import models
5
 
6
  # Retrieve the Hugging Face token
 
 
 
 
 
7
  api_token = os.getenv("HF_CTB_TOKEN")
8
 
9
  # Debugging: Check if the Hugging Face token is available
 
13
  print("Hugging Face token loaded successfully.")
14
 
15
 
 
 
 
 
 
 
16
  # Debugging: Print prompt and model options
17
  print("Prompt Options:", [p["alias"] for p in prompts])
18
  print("Model Options:", [m["alias"] for m in models])
config/config_colab.py CHANGED
@@ -1,6 +1,6 @@
1
  # config_colab.py
2
  from google.colab import userdata
3
- from src.prompts import prompts # Import prompts from prompts.py
4
 
5
  # Retrieve the Hugging Face token from Colab secrets
6
  api_token = userdata.get("HF_CTB_TOKEN")
@@ -13,12 +13,6 @@ else:
13
  print("=== Debug: Success ===")
14
  print("Hugging Face token loaded successfully.")
15
 
16
- # List of models with aliases
17
- models = [
18
- {"alias": "FLUX.1-dev", "name": "black-forest-labs/FLUX.1-dev"},
19
- {"alias": "Midjourney", "name": "strangerzonehf/Flux-Midjourney-Mix2-LoRA"}
20
- ]
21
-
22
  # Debugging: Print prompt and model options
23
  print("=== Debug: Available Options ===")
24
  print("Prompt Options:", [p["alias"] for p in prompts])
 
1
  # config_colab.py
2
  from google.colab import userdata
3
+ from config.prompts import prompts # Import prompts from prompts.py
4
 
5
  # Retrieve the Hugging Face token from Colab secrets
6
  api_token = userdata.get("HF_CTB_TOKEN")
 
13
  print("=== Debug: Success ===")
14
  print("Hugging Face token loaded successfully.")
15
 
 
 
 
 
 
 
16
  # Debugging: Print prompt and model options
17
  print("=== Debug: Available Options ===")
18
  print("Prompt Options:", [p["alias"] for p in prompts])
config/models.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # List of models with aliases
2
+ models = [
3
+ {"alias": "FLUX.1-dev", "name": "black-forest-labs/FLUX.1-dev"},
4
+ {"alias": "Midjourney", "name": "strangerzonehf/Flux-Midjourney-Mix2-LoRA"}
5
+ ]
{src → config}/prompts.py RENAMED
File without changes
src/gradio_interface.py CHANGED
@@ -1,16 +1,7 @@
1
  # gradio_interface.py (HuggingFace Spaces)
2
  import gradio as gr
3
- from src.img_gen_logic import generate_image # Direct import
4
  from config.config import prompts, models # Direct import
5
 
6
- def generate(prompt_alias, team, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
7
- try:
8
- # Generate the image
9
- image_path, message = generate_image(prompt_alias, team, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed)
10
- return image_path, message
11
- except Exception as e:
12
- return None, f"An error occurred: {e}"
13
-
14
  # Gradio Interface
15
  with gr.Blocks() as demo:
16
  gr.Markdown("# CtB AI Image Generator")
 
1
  # gradio_interface.py (HuggingFace Spaces)
2
  import gradio as gr
 
3
  from config.config import prompts, models # Direct import
4
 
 
 
 
 
 
 
 
 
5
  # Gradio Interface
6
  with gr.Blocks() as demo:
7
  gr.Markdown("# CtB AI Image Generator")
src/{img_gen_logic.py → img_gen.py} RENAMED
@@ -1,10 +1,17 @@
1
- # img_gen_logic.py
2
  import random
3
  from huggingface_hub import InferenceClient
4
- from PIL import Image
5
  from datetime import datetime
6
  from config.config import api_token, models, prompts # Direct import
7
 
 
 
 
 
 
 
 
 
8
 
9
  def generate_image(prompt_alias, team, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
10
  # Debugging: Check if the token is available
 
1
+ # img_gen.py
2
  import random
3
  from huggingface_hub import InferenceClient
 
4
  from datetime import datetime
5
  from config.config import api_token, models, prompts # Direct import
6
 
7
+ def generate(prompt_alias, team, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
8
+ try:
9
+ # Generate the image
10
+ image_path, message = generate_image(prompt_alias, team, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed)
11
+ return image_path, message
12
+ except Exception as e:
13
+ return None, f"An error occurred: {e}"
14
+
15
 
16
  def generate_image(prompt_alias, team, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
17
  # Debugging: Check if the token is available