Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,21 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
import random
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
from PIL import Image
|
| 6 |
-
|
| 7 |
-
import ipywidgets as widgets
|
| 8 |
from datetime import datetime
|
| 9 |
|
| 10 |
-
# Retrieve the Hugging Face token from
|
| 11 |
-
api_token = os.
|
| 12 |
|
| 13 |
# List of models with aliases
|
| 14 |
models = [
|
| 15 |
-
{
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
},
|
| 19 |
-
{
|
| 20 |
-
"alias": "Stable Diffusion 3.5 turbo",
|
| 21 |
-
"name": "stabilityai/stable-diffusion-3.5-large-turbo"
|
| 22 |
-
},
|
| 23 |
-
{
|
| 24 |
-
"alias": "Midjourney",
|
| 25 |
-
"name": "strangerzonehf/Flux-Midjourney-Mix2-LoRA"
|
| 26 |
-
}
|
| 27 |
]
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
client = InferenceClient(models[0]["name"], token=api_token)
|
| 31 |
-
|
| 32 |
-
# List of 10 prompts with intense combat
|
| 33 |
prompts = [
|
| 34 |
{
|
| 35 |
"alias": "Castle Siege",
|
|
@@ -73,173 +59,77 @@ prompts = [
|
|
| 73 |
}
|
| 74 |
]
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
# Dropdown menu for prompt selection
|
| 84 |
-
prompt_dropdown = widgets.Dropdown(
|
| 85 |
-
options=[(prompt["alias"], prompt["text"]) for prompt in prompts],
|
| 86 |
-
description="Select Prompt:",
|
| 87 |
-
style={"description_width": "initial"}
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
# Dropdown menu for team selection
|
| 91 |
-
team_dropdown = widgets.Dropdown(
|
| 92 |
-
options=["Red", "Blue"],
|
| 93 |
-
description="Select Team:",
|
| 94 |
-
style={"description_width": "initial"}
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
# Input for height
|
| 98 |
-
height_input = widgets.IntText(
|
| 99 |
-
value=360,
|
| 100 |
-
description="Height:",
|
| 101 |
-
style={"description_width": "initial"}
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
# Input for width
|
| 105 |
-
width_input = widgets.IntText(
|
| 106 |
-
value=640,
|
| 107 |
-
description="Width:",
|
| 108 |
-
style={"description_width": "initial"}
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
# Input for number of inference steps
|
| 112 |
-
num_inference_steps_input = widgets.IntSlider(
|
| 113 |
-
value=20,
|
| 114 |
-
min=10,
|
| 115 |
-
max=100,
|
| 116 |
-
step=1,
|
| 117 |
-
description="Inference Steps:",
|
| 118 |
-
style={"description_width": "initial"}
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
# Input for guidance scale
|
| 122 |
-
guidance_scale_input = widgets.FloatSlider(
|
| 123 |
-
value=2,
|
| 124 |
-
min=1.0,
|
| 125 |
-
max=20.0,
|
| 126 |
-
step=0.5,
|
| 127 |
-
description="Guidance Scale:",
|
| 128 |
-
style={"description_width": "initial"}
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
# Input for seed
|
| 132 |
-
seed_input = widgets.IntText(
|
| 133 |
-
value=random.randint(0, 1000000),
|
| 134 |
-
description="Seed:",
|
| 135 |
-
style={"description_width": "initial"}
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
# Checkbox to randomize seed
|
| 139 |
-
randomize_seed_checkbox = widgets.Checkbox(
|
| 140 |
-
value=True,
|
| 141 |
-
description="Randomize Seed",
|
| 142 |
-
style={"description_width": "initial"}
|
| 143 |
-
)
|
| 144 |
|
| 145 |
-
# Button to generate image
|
| 146 |
-
generate_button = widgets.Button(
|
| 147 |
-
description="Generate Image",
|
| 148 |
-
button_style="success"
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
# Output area to display the image
|
| 152 |
-
output = widgets.Output()
|
| 153 |
-
|
| 154 |
-
# Function to generate images based on the selected prompt, team, and model
|
| 155 |
-
def generate_image(prompt, team, model_name, height, width, num_inference_steps, guidance_scale, seed):
|
| 156 |
# Determine the enemy color
|
| 157 |
enemy_color = "blue" if team.lower() == "red" else "red"
|
| 158 |
-
|
| 159 |
-
# Replace {enemy_color} in the prompt
|
| 160 |
prompt = prompt.format(enemy_color=enemy_color)
|
| 161 |
-
|
| 162 |
if team.lower() == "red":
|
| 163 |
prompt += " The winning army is dressed in red armor and banners."
|
| 164 |
elif team.lower() == "blue":
|
| 165 |
prompt += " The winning army is dressed in blue armor and banners."
|
| 166 |
-
else:
|
| 167 |
-
return "Invalid team selection. Please choose 'Red' or 'Blue'."
|
| 168 |
-
|
| 169 |
-
try:
|
| 170 |
-
# Randomize the seed if the checkbox is checked
|
| 171 |
-
if randomize_seed_checkbox.value:
|
| 172 |
-
seed = random.randint(0, 1000000)
|
| 173 |
-
seed_input.value = seed # Update the seed input box
|
| 174 |
-
|
| 175 |
-
print(f"Using seed: {seed}")
|
| 176 |
-
|
| 177 |
-
# Debug: Indicate that the image is being generated
|
| 178 |
-
print("Generating image... Please wait.")
|
| 179 |
-
|
| 180 |
-
# Initialize the InferenceClient with the selected model
|
| 181 |
-
client = InferenceClient(model_name, token=api_token)
|
| 182 |
-
|
| 183 |
-
# Generate the image using the Inference API with parameters
|
| 184 |
-
image = client.text_to_image(
|
| 185 |
-
prompt,
|
| 186 |
-
guidance_scale=guidance_scale, # Guidance scale
|
| 187 |
-
num_inference_steps=num_inference_steps, # Number of inference steps
|
| 188 |
-
width=width, # Width
|
| 189 |
-
height=height, # Height
|
| 190 |
-
seed=seed # Random seed
|
| 191 |
-
)
|
| 192 |
-
return image
|
| 193 |
-
except Exception as e:
|
| 194 |
-
return f"An error occurred: {e}"
|
| 195 |
-
|
| 196 |
-
# Function to handle button click event
|
| 197 |
-
def on_generate_button_clicked(b):
|
| 198 |
-
with output:
|
| 199 |
-
clear_output(wait=True) # Clear previous output
|
| 200 |
-
selected_prompt = prompt_dropdown.value
|
| 201 |
-
selected_team = team_dropdown.value
|
| 202 |
-
selected_model = model_dropdown.value
|
| 203 |
-
height = height_input.value
|
| 204 |
-
width = width_input.value
|
| 205 |
-
num_inference_steps = num_inference_steps_input.value
|
| 206 |
-
guidance_scale = guidance_scale_input.value
|
| 207 |
-
seed = seed_input.value
|
| 208 |
-
|
| 209 |
-
# Debug: Show selected parameters
|
| 210 |
-
print(f"Selected Model: {model_dropdown.label}")
|
| 211 |
-
print(f"Selected Prompt: {prompt_dropdown.label}")
|
| 212 |
-
print(f"Selected Team: {selected_team}")
|
| 213 |
-
print(f"Height: {height}")
|
| 214 |
-
print(f"Width: {width}")
|
| 215 |
-
print(f"Inference Steps: {num_inference_steps}")
|
| 216 |
-
print(f"Guidance Scale: {guidance_scale}")
|
| 217 |
-
print(f"Seed: {seed}")
|
| 218 |
-
|
| 219 |
-
# Generate the image
|
| 220 |
-
image = generate_image(selected_prompt, selected_team, selected_model, height, width, num_inference_steps, guidance_scale, seed)
|
| 221 |
-
|
| 222 |
-
if isinstance(image, str):
|
| 223 |
-
print(image)
|
| 224 |
-
else:
|
| 225 |
-
# Debug: Indicate that the image is being displayed and saved
|
| 226 |
-
print("Image generated successfully!")
|
| 227 |
-
print("Displaying image...")
|
| 228 |
-
|
| 229 |
-
# Display the image in the notebook
|
| 230 |
-
display(image)
|
| 231 |
-
|
| 232 |
-
# Save the image with a timestamped filename
|
| 233 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 234 |
-
output_filename = f"{timestamp}_{model_dropdown.label.replace(' ', '_').lower()}_{prompt_dropdown.label.replace(' ', '_').lower()}_{selected_team.lower()}.png"
|
| 235 |
-
print(f"Saving image as {output_filename}...")
|
| 236 |
-
image.save(output_filename)
|
| 237 |
-
print(f"Image saved as {output_filename}")
|
| 238 |
-
|
| 239 |
-
# Attach the button click event handler
|
| 240 |
-
generate_button.on_click(on_generate_button_clicked)
|
| 241 |
-
|
| 242 |
-
# Display the widgets
|
| 243 |
-
#display(model_dropdown, prompt_dropdown, team_dropdown, height_input, width_input, num_inference_steps_input, guidance_scale_input, seed_input, randomize_seed_checkbox, generate_button, output)
|
| 244 |
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import random
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
from PIL import Image
|
| 5 |
+
import gradio as gr
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
|
| 8 |
+
# Retrieve the Hugging Face token from environment variables
|
| 9 |
+
api_token = os.getenv("HF_TOKEN")
|
| 10 |
|
| 11 |
# List of models with aliases
|
| 12 |
models = [
|
| 13 |
+
{"alias": "FLUX.1-dev", "name": "black-forest-labs/FLUX.1-dev"},
|
| 14 |
+
{"alias": "Stable Diffusion 3.5 turbo", "name": "stabilityai/stable-diffusion-3.5-large-turbo"},
|
| 15 |
+
{"alias": "Midjourney", "name": "strangerzonehf/Flux-Midjourney-Mix2-LoRA"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
]
|
| 17 |
|
| 18 |
+
# List of prompts with intense combat
|
|
|
|
|
|
|
|
|
|
| 19 |
prompts = [
|
| 20 |
{
|
| 21 |
"alias": "Castle Siege",
|
|
|
|
| 59 |
}
|
| 60 |
]
|
| 61 |
|
| 62 |
+
# Function to generate images
|
| 63 |
+
def generate_image(prompt_alias, team, model_alias, height, width, num_inference_steps, guidance_scale, seed):
|
| 64 |
+
# Find the selected prompt and model
|
| 65 |
+
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
|
| 66 |
+
model_name = next(m for m in models if m["alias"] == model_alias)["name"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
# Determine the enemy color
|
| 69 |
enemy_color = "blue" if team.lower() == "red" else "red"
|
|
|
|
|
|
|
| 70 |
prompt = prompt.format(enemy_color=enemy_color)
|
| 71 |
+
|
| 72 |
if team.lower() == "red":
|
| 73 |
prompt += " The winning army is dressed in red armor and banners."
|
| 74 |
elif team.lower() == "blue":
|
| 75 |
prompt += " The winning army is dressed in blue armor and banners."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Randomize the seed if needed
|
| 78 |
+
if seed == -1:
|
| 79 |
+
seed = random.randint(0, 1000000)
|
| 80 |
+
|
| 81 |
+
# Initialize the InferenceClient
|
| 82 |
+
client = InferenceClient(model_name, token=api_token)
|
| 83 |
+
|
| 84 |
+
# Generate the image
|
| 85 |
+
image = client.text_to_image(
|
| 86 |
+
prompt,
|
| 87 |
+
guidance_scale=guidance_scale,
|
| 88 |
+
num_inference_steps=num_inference_steps,
|
| 89 |
+
width=width,
|
| 90 |
+
height=height,
|
| 91 |
+
seed=seed
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Save the image with a timestamped filename
|
| 95 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 96 |
+
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team.lower()}.png"
|
| 97 |
+
image.save(output_filename)
|
| 98 |
+
|
| 99 |
+
return output_filename
|
| 100 |
+
|
| 101 |
+
# Gradio Interface
|
| 102 |
+
with gr.Blocks() as demo:
|
| 103 |
+
gr.Markdown("# CtB AI Image Generator")
|
| 104 |
+
with gr.Row():
|
| 105 |
+
prompt_dropdown = gr.Dropdown(choices=[p["alias"] for p in prompts], label="Select Prompt")
|
| 106 |
+
team_dropdown = gr.Dropdown(choices=["Red", "Blue"], label="Select Team")
|
| 107 |
+
model_dropdown = gr.Dropdown(choices=[m["alias"] for m in models], label="Select Model")
|
| 108 |
+
with gr.Row():
|
| 109 |
+
height_input = gr.Number(value=360, label="Height")
|
| 110 |
+
width_input = gr.Number(value=640, label="Width")
|
| 111 |
+
num_inference_steps_input = gr.Slider(minimum=10, maximum=100, value=20, label="Inference Steps")
|
| 112 |
+
guidance_scale_input = gr.Slider(minimum=1.0, maximum=20.0, value=2.0, step=0.5, label="Guidance Scale")
|
| 113 |
+
seed_input = gr.Number(value=-1, label="Seed (-1 for random)")
|
| 114 |
+
with gr.Row():
|
| 115 |
+
generate_button = gr.Button("Generate Image")
|
| 116 |
+
with gr.Row():
|
| 117 |
+
output_image = gr.Image(label="Generated Image")
|
| 118 |
+
|
| 119 |
+
# Function to handle button click
|
| 120 |
+
def generate(prompt_alias, team, model_alias, height, width, num_inference_steps, guidance_scale, seed):
|
| 121 |
+
try:
|
| 122 |
+
image_path = generate_image(prompt_alias, team, model_alias, height, width, num_inference_steps, guidance_scale, seed)
|
| 123 |
+
return image_path
|
| 124 |
+
except Exception as e:
|
| 125 |
+
return f"An error occurred: {e}"
|
| 126 |
+
|
| 127 |
+
# Connect the button to the function
|
| 128 |
+
generate_button.click(
|
| 129 |
+
generate,
|
| 130 |
+
inputs=[prompt_dropdown, team_dropdown, model_dropdown, height_input, width_input, num_inference_steps_input, guidance_scale_input, seed_input],
|
| 131 |
+
outputs=output_image
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Launch the Gradio app
|
| 135 |
+
demo.launch()
|