Spaces:
Sleeping
Sleeping
# img_gen.py | |
import sys | |
import os | |
import random | |
from huggingface_hub import InferenceClient, login | |
from datetime import datetime | |
from config.config import models, prompts, api_token # Direct import | |
def generate_image( | |
prompt_alias, | |
team_color, | |
custom_prompt, | |
model_alias="FLUX.1-dev", | |
height=360, | |
width=640, | |
num_inference_steps=20, | |
guidance_scale=2.0, | |
seed=-1): | |
# Find the selected prompt and model | |
try: | |
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
#model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
model_name = f"black-forest-labs/{model_alias}" | |
except StopIteration: | |
return None, "ERROR: Invalid prompt or model selected." | |
# Determine the enemy color | |
enemy_color = "blue" if team_color.lower() == "red" else "red" | |
# if team.lower() == "red": | |
# winning_team_text = " The winning army is dressed in red armor and banners." | |
# elif team.lower() == "blue": | |
# winning_team_text = " The winning army is dressed in blue armor and banners." | |
# Print the original prompt and dynamic values for debugging | |
print("Original Prompt:") | |
print(prompt) | |
print(f"Enemy Color: {enemy_color}") | |
print(f"Team Color: {team_color.lower()}") | |
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
# Append the custom prompt (if provided) | |
if custom_prompt and len(custom_prompt.strip()) > 0: | |
prompt += " " + custom_prompt.strip() | |
# Print the formatted prompt for debugging | |
print("\nFormatted Prompt:") | |
print(prompt) | |
# Randomize the seed if needed | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
# HF LOGIN | |
print("Initializing HF TOKEN") | |
print (api_token) | |
# login(token=api_token) | |
# print("model_name:") | |
# print(model_name) | |
# Initialize the InferenceClient | |
try: | |
print("-----INITIALIZING INFERENCE-----") | |
client = InferenceClient(model_name, token=api_token) | |
print("Inference activated") | |
except Exception as e: | |
return None, f"ERROR: Failed to initialize InferenceClient. Details: {e}" | |
#Generate the image | |
try: | |
print("-----GENERATING IMAGE-----") | |
image = client.text_to_image( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
seed=seed | |
) | |
print("-----IMAGE GENERATED SUCCESSFULLY!-----") | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
# Save the image with a timestamped filename | |
print("-----SAVING-----", image) | |
path = "images" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
output_filename = f"{path}/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
try: | |
image.save(output_filename) | |
except Exception as e: | |
return None, f"ERROR: Failed to save image. Details: {e}" | |
print("-----DONE!-----") | |
return output_filename, "Image generated successfully!" |