Spaces:
Sleeping
Sleeping
#img_gen_modal.py | |
import modal | |
import random | |
from datetime import datetime | |
import random | |
import io | |
from config.config import prompts, models # Indirect import | |
import os | |
import torch | |
from huggingface_hub import login | |
from transformers import AutoTokenizer | |
# Define the Modal image | |
image = ( | |
#modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") | |
modal.Image.debian_slim(python_version="3.9") # Base image | |
.apt_install( | |
"git", | |
) | |
.pip_install( | |
"diffusers", | |
"transformers", | |
"torch", | |
"accelerate", | |
"gradio>=4.44.1", | |
"safetensors", | |
"pillow", | |
"sentencepiece", | |
"hf_transfer", | |
"huggingface_hub[hf_transfer]", | |
"aria2", # aria2 for ultra-fast parallel downloads | |
f"git+https://github.com/huggingface/transformers.git" | |
) | |
.env( | |
{ | |
"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME" | |
} | |
) | |
) | |
# Create a Modal app | |
app = modal.App("img-gen-modal", image=image) | |
with image.imports(): | |
import diffusers | |
import os | |
import gradio | |
import torch | |
import sentencepiece | |
#flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume | |
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, | |
num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
import torch | |
from diffusers import StableDiffusionPipeline | |
# Find the selected prompt and model | |
try: | |
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
except StopIteration: | |
return None, "ERROR: Invalid prompt or model selected." | |
# Determine the enemy color | |
enemy_color = "blue" if team_color.lower() == "red" else "red" | |
# Print the original prompt and dynamic values for debugging | |
print("Original Prompt:") | |
print(prompt) | |
print(f"Enemy Color: {enemy_color}") | |
print(f"Team Color: {team_color.lower()}") | |
# Format the prompt | |
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
# Print the formatted prompt for debugging | |
print("\nFormatted Prompt:") | |
print(prompt) | |
# Append custom prompt if provided | |
if custom_prompt and len(custom_prompt.strip()) > 0: | |
prompt += " " + custom_prompt.strip() | |
# Randomize seed if needed | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
# Initialize the pipeline | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_name, | |
#torch_dtype=torch.float16, | |
use_safetensors=True, | |
#variant="fp16" | |
) | |
pipe.to("cpu") | |
# Generate the image | |
try: | |
image = pipe( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=torch.Generator("cpu").manual_seed(seed) | |
).images[0] | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
# Save the image with a timestamped filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
try: | |
image.save(output_filename) | |
except Exception as e: | |
return None, f"ERROR: Failed to save image. Details: {e}" | |
return output_filename, "Image generated successfully!" |