Spaces:
Sleeping
Sleeping
#img_gen_modal.py | |
import modal | |
import sys | |
import os | |
import random | |
from datetime import datetime | |
import random | |
import io | |
from config.config import models, prompts # Indirect import | |
import gradio as gr | |
volume = modal.Volume.from_name("flux-model-vol") # Reference your volume | |
# Define the Modal image | |
image = ( | |
modal.Image.from_registry( | |
"nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.11" | |
) | |
.pip_install( | |
"ninja", | |
"packaging", | |
"wheel", | |
"diffusers", # For Stable Diffusion | |
"transformers", # For Hugging Face models | |
"torch>=2.0.1", # PyTorch with a minimum version | |
"accelerate", # For distributed training/inference | |
"gradio", # For the Gradio interface | |
"safetensors", # For safe model loading | |
"pillow", # For image processing | |
"datasets", # For datasets (if needed) | |
) | |
) | |
app = modal.App("ctb-ai-img-gen-mondal", image=image) | |
f = modal.Function.lookup("ctb-ai-img-gen-mondal", "generate_image") | |
def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
import gradio as gr | |
try: | |
# Generate the image | |
image_path, message = f.remote(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed) | |
return image_path, message | |
except Exception as e: | |
return None, f"An error occurred: {e}" | |
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, | |
num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
import torch | |
from diffusers import StableDiffusionPipeline | |
# Check if the directory exists | |
import os | |
model_dir = "/volume/FLUX.1-dev" | |
if not os.path.exists(model_dir): | |
raise FileNotFoundError(f"Model directory not found at {model_dir}") | |
# Your image generation code here | |
print(f"Model directory found at {model_dir}! Proceeding with image generation...") | |
# Example: List contents of the directory | |
print("Contents of FLUX.1-dev:") | |
print(os.listdir(model_dir)) | |
# Find the selected prompt and model | |
try: | |
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
except StopIteration: | |
return None, "ERROR: Invalid prompt or model selected." | |
# Debug: Check if the model directory exists | |
print(f"Debug: Checking if model directory exists: {model_name}") | |
if not os.path.exists(model_name): | |
return None, f"ERROR: Model directory not found at {model_name}" | |
# Initialize the pipeline using the local model | |
print("Debug: Loading model...") | |
# Determine the enemy color | |
enemy_color = "blue" if team_color.lower() == "red" else "red" | |
# Print the original prompt and dynamic values for debugging | |
print("Original Prompt:") | |
print(prompt) | |
print(f"Enemy Color: {enemy_color}") | |
print(f"Team Color: {team_color.lower()}") | |
# Format the prompt | |
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
# Print the formatted prompt for debugging | |
print("\nFormatted Prompt:") | |
print(prompt) | |
# Append custom prompt if provided | |
if custom_prompt and len(custom_prompt.strip()) > 0: | |
prompt += " " + custom_prompt.strip() | |
# Randomize seed if needed | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
# Initialize the pipeline | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
#variant="fp16" | |
) | |
pipe.to("cuda") | |
# Connect the button to the function | |
generate_button.click( | |
generate, | |
inputs=[prompt_dropdown, team_dropdown, model_dropdown, custom_prompt_input], | |
outputs=[output_image, status_text] | |
) | |
# Generate the image | |
try: | |
image = pipe( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=torch.Generator("cuda").manual_seed(seed) | |
).images[0] | |
# Convert PIL image to bytes | |
img_byte_arr = io.BytesIO() | |
image.save(img_byte_arr, format='PNG') | |
img_byte_arr = img_byte_arr.getvalue() | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
# Save the image with a timestamped filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
try: | |
image.save(output_filename) | |
except Exception as e: | |
return img_byte_arr, "Image generated successfully!" | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
return output_filename, "Image generated successfully!" | |