CtB-AI-img-gen / old /old v1 /img_gen_modal_old2.py
Andre
update 1.1
4f48282
#img_gen_modal.py
import modal
import sys
import os
import random
from datetime import datetime
import random
import io
from config.config import models, prompts # Indirect import
import gradio as gr
volume = modal.Volume.from_name("flux-model-vol") # Reference your volume
# Define the Modal image
image = (
modal.Image.from_registry(
"nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.11"
)
.pip_install(
"ninja",
"packaging",
"wheel",
"diffusers", # For Stable Diffusion
"transformers", # For Hugging Face models
"torch>=2.0.1", # PyTorch with a minimum version
"accelerate", # For distributed training/inference
"gradio", # For the Gradio interface
"safetensors", # For safe model loading
"pillow", # For image processing
"datasets", # For datasets (if needed)
)
)
app = modal.App("ctb-ai-img-gen-mondal", image=image)
f = modal.Function.lookup("ctb-ai-img-gen-mondal", "generate_image")
def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
import gradio as gr
try:
# Generate the image
image_path, message = f.remote(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed)
return image_path, message
except Exception as e:
return None, f"An error occurred: {e}"
@app.function(
volumes={"/volume": volume}, # Mount the volume to /volume
#gpu="T4",
timeout=600
)
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640,
num_inference_steps=20, guidance_scale=2.0, seed=-1):
import torch
from diffusers import StableDiffusionPipeline
# Check if the directory exists
import os
model_dir = "/volume/FLUX.1-dev"
if not os.path.exists(model_dir):
raise FileNotFoundError(f"Model directory not found at {model_dir}")
# Your image generation code here
print(f"Model directory found at {model_dir}! Proceeding with image generation...")
# Example: List contents of the directory
print("Contents of FLUX.1-dev:")
print(os.listdir(model_dir))
# Find the selected prompt and model
try:
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
model_name = next(m for m in models if m["alias"] == model_alias)["name"]
except StopIteration:
return None, "ERROR: Invalid prompt or model selected."
# Debug: Check if the model directory exists
print(f"Debug: Checking if model directory exists: {model_name}")
if not os.path.exists(model_name):
return None, f"ERROR: Model directory not found at {model_name}"
# Initialize the pipeline using the local model
print("Debug: Loading model...")
# Determine the enemy color
enemy_color = "blue" if team_color.lower() == "red" else "red"
# Print the original prompt and dynamic values for debugging
print("Original Prompt:")
print(prompt)
print(f"Enemy Color: {enemy_color}")
print(f"Team Color: {team_color.lower()}")
# Format the prompt
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)
# Print the formatted prompt for debugging
print("\nFormatted Prompt:")
print(prompt)
# Append custom prompt if provided
if custom_prompt and len(custom_prompt.strip()) > 0:
prompt += " " + custom_prompt.strip()
# Randomize seed if needed
if seed == -1:
seed = random.randint(0, 1000000)
# Initialize the pipeline
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16,
use_safetensors=True,
#variant="fp16"
)
pipe.to("cuda")
# Connect the button to the function
generate_button.click(
generate,
inputs=[prompt_dropdown, team_dropdown, model_dropdown, custom_prompt_input],
outputs=[output_image, status_text]
)
# Generate the image
try:
image = pipe(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=torch.Generator("cuda").manual_seed(seed)
).images[0]
# Convert PIL image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
except Exception as e:
return None, f"ERROR: Failed to generate image. Details: {e}"
# Save the image with a timestamped filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
try:
image.save(output_filename)
except Exception as e:
return img_byte_arr, "Image generated successfully!"
except Exception as e:
return None, f"ERROR: Failed to generate image. Details: {e}"
return output_filename, "Image generated successfully!"