Spaces:
Sleeping
Sleeping
#img_gen_modal.py | |
import modal | |
import random | |
from datetime import datetime | |
import random | |
import io | |
from config.config import prompts, models # Indirect import | |
# Define the Modal image | |
image = ( | |
modal.Image.debian_slim(python_version="3.11") # Base image | |
.pip_install( | |
"numpy", | |
"pandas", | |
"diffusers", | |
"transformers", | |
"torch", | |
"accelerate", | |
"gradio", | |
"safetensors", | |
"pillow", | |
) # Install Python packages | |
.run_commands("echo 'Image build complete!'") # Run a shell command | |
) | |
# Create a Modal app | |
app = modal.App("img-gen-modal", image=image) | |
flux_model_vol = modal.Volume.from_name("flux-model-vol") # Reference your volume | |
# def on_button_click(): | |
# f = modal.Function.from_name("functions-app", "message") | |
# messageNEW = "Remote call Hello World!" | |
# message.remote((messageNEW)) | |
# #return message.remote((messageNEW)) | |
def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
# Debug: Print a message when the function starts | |
print("Starting main function inside the container...") | |
# Import libraries and print their versions | |
import numpy as np | |
import pandas as pd | |
import torch | |
import diffusers | |
import transformers | |
import gradio as gr | |
from PIL import Image as PILImage | |
print("Hello from img_gen_modal!") | |
print("NumPy version:", np.__version__) | |
print("Pandas version:", pd.__version__) | |
print("PyTorch version:", torch.__version__) | |
print("Diffusers version:", diffusers.__version__) # Corrected: Use the library's __version__ | |
print("Transformers version:", transformers.__version__) # Corrected: Use the library's __version__ | |
print("Gradio version:", gr.__version__) | |
print("Pillow version:", PILImage.__version__) | |
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, | |
num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from config.config import prompts, models # Indirect import | |
# Find the selected prompt and model | |
try: | |
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
except StopIteration: | |
return None, "ERROR: Invalid prompt or model selected." | |
# Determine the enemy color | |
enemy_color = "blue" if team_color.lower() == "red" else "red" | |
# Print the original prompt and dynamic values for debugging | |
print("Original Prompt:") | |
print(prompt) | |
print(f"Enemy Color: {enemy_color}") | |
print(f"Team Color: {team_color.lower()}") | |
# Format the prompt | |
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
# Print the formatted prompt for debugging | |
print("\nFormatted Prompt:") | |
print(prompt) | |
# Append custom prompt if provided | |
if custom_prompt and len(custom_prompt.strip()) > 0: | |
prompt += " " + custom_prompt.strip() | |
# Randomize seed if needed | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
# Initialize the pipeline | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16" | |
) | |
pipe.to("cpu") | |
# Generate the image | |
try: | |
image = pipe( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=torch.Generator("cuda").manual_seed(seed) | |
).images[0] | |
except Exception as e: | |
return None, f"An error occurred ON PIPE: {e}" | |
# # Convert PIL image to bytes | |
# img_byte_arr = io.BytesIO() | |
# image.save(img_byte_arr, format='PNG') | |
# img_byte_arr = img_byte_arr.getvalue() | |
# except Exception as e: | |
# return None, f"ERROR: Failed to generate image. Details: {e}" | |
# Save the image with a timestamped filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
try: | |
image.save(output_filename) | |
except Exception as e: | |
return img_byte_arr, "Image generated successfully!" | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
return output_filename, "Image generated successfully!" | |
# Run the function locally (for testing) | |
def main(): | |
print("Running the function locally...") | |
generate.remote("horse", "blue", "FLUX.1-dev", "bear", height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1) |