Spaces:
Sleeping
Sleeping
import modal | |
import random | |
from datetime import datetime | |
import io | |
import os | |
from config.config import models, prompts | |
volume = modal.Volume.from_name("flux-model-vol") | |
# Define the Modal image | |
image = (modal.Image.debian_slim(python_version="3.9") | |
.pip_install( | |
"ninja", | |
"packaging", | |
"wheel", | |
"diffusers", # For Stable Diffusion | |
"transformers", # For Hugging Face models | |
"torch>=2.0.1", # PyTorch with a minimum version | |
"accelerate", # For distributed training/inference | |
"gradio", # For the Gradio interface | |
"safetensors", # For safe model loading | |
"pillow", # For image processing | |
"datasets", # For datasets (if needed) | |
) | |
) | |
with image.imports(): | |
import diffusers | |
import torch | |
from fastapi import Response | |
app = modal.App("ctb-ai-img-gen-modal", image=image) | |
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
import torch | |
from diffusers import StableDiffusionPipeline | |
# Debug function to check installed packages | |
def check_dependencies(): | |
import importlib | |
# Load the pipeline | |
self.model_dir = model_dir | |
self.device = "cuda" | |
self.torch_dtype = torch.float16 | |
#@modal.method() | |
def run( | |
self, | |
prompt_alias: str, | |
team_color: str, | |
model_alias: str, | |
custom_prompt: str, | |
height: int = 360, | |
width: int = 640, | |
num_inference_steps: int = 20, | |
guidance_scale: float = 2.0, | |
seed: int = -1, | |
) -> tuple[str, str]: | |
import torch | |
from diffusers import StableDiffusionPipeline | |
# Find the selected prompt and model | |
try: | |
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
except StopIteration: | |
return None, "ERROR: Invalid prompt or model selected." | |
# Determine the enemy color | |
enemy_color = "blue" if team_color.lower() == "red" else "red" | |
# Format the prompt | |
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
# Append custom prompt if provided | |
if custom_prompt and len(custom_prompt.strip()) > 0: | |
prompt += " " + custom_prompt.strip() | |
# Set seed | |
seed = seed if seed != -1 else random.randint(0, 2**32 - 1) | |
print("seeding RNG with", seed) | |
torch.manual_seed(seed) | |
# Load the pipeline | |
model_path = os.path.join(self.model_dir, model_name) | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_path, | |
torch_dtype=self.torch_dtype, | |
safety_checker=None, # Disable safety checker | |
feature_extractor=None, # Disable feature extractor | |
).to(self.device) | |
# Generate the image | |
try: | |
image = pipe( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=torch.Generator(self.device).manual_seed(seed) | |
).images[0] | |
# Save the image with a timestamped filename | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
image.save(output_filename) | |
return output_filename, "Image generated successfully!" | |
except Exception as e: | |
return None, f"ERROR: Failed to generate image. Details: {e}" | |
# Function to be called from the Gradio interface | |
def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
try: | |
# Generate the image | |
image_path, message = generate_image(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed) | |
return image_path, message | |
except Exception as e: | |
return None, f"An error occurred: {e}" | |