CtB-AI-img-gen / old /img_gen_modal copy.py
Andre
update 1.1
4f48282
#img_gen_modal.py
import modal
import random
import io
from config.config import prompts, models # Indirect import
import os
import gradio as gr
#MOVED FROM IMAGE IMPORT LIST
import torch
import sentencepiece
import torch
from huggingface_hub import login
from transformers import AutoTokenizer
import random
from datetime import datetime
#import xformers
########## LIVE PREVIEW TEST 1/3 ##########
#from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
###########################################
CACHE_DIR = "/model_cache"
# Define the Modal image
image = (
modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9")
.pip_install_from_requirements("requirements.txt")
#modal.Image.debian_slim(python_version="3.9") # Base image
# .apt_install(
# "git",
# )
# .pip_install(
# "diffusers",
# "transformers",
# "xformers",
# "torch",
# "accelerate",
# "gradio>=4.44.1",
# "safetensors",
# "pillow",
# "sentencepiece",
# "hf_transfer",
# "huggingface_hub[hf_transfer]",
# "aria2", # aria2 for ultra-fast parallel downloads
# f"git+https://github.com/huggingface/transformers.git"
# )
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR
}
)
)
# Create a Modal app
app = modal.App("img-gen-modal", image=image)
with image.imports():
import os
flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume
############ LIVE PREVIEW 2/3 ##################
# dtype = torch.bfloat16
# device = "cuda" if torch.cuda.is_available() else "cpu"
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
# torch.cuda.empty_cache()
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 2048
#pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
#################################################
# GPU FUNCTION
@app.function(volumes={"/data": flux_model_vol},
secrets=[modal.Secret.from_name("huggingface-token")],
gpu="L40S",
timeout = 300
)
def generate_image_gpu(prompt_alias, team_color, model_alias, custom_prompt):
image = generate_image(prompt_alias, team_color, model_alias, custom_prompt)
return image, "Image generated successfully! Call the banners!"
# CPU FUNCTION
@app.function(volumes={"/data": flux_model_vol},
secrets=[modal.Secret.from_name("huggingface-token")],
cpu = 1,
timeout = 300
)
def generate_image_cpu(prompt_alias, team_color, model_alias, custom_prompt):
image = generate_image(prompt_alias, team_color, model_alias, custom_prompt)
return image, "Image generated successfully! Call the banners!"
# MAIN GENERATE IMAGE FUNCTION
def generate_image(
prompt_alias,
team_color,
model_alias,
custom_prompt,
height=360,
width=640,
num_inference_steps=20,
guidance_scale=2.0,
seed=-1,
progress=gr.Progress(track_tqdm=True) # Add progress parameter
):
with modal.enable_output():
print("Hello from ctb_modal!")
print("Running debug check...")
# Debug function to check installed packages
def check_dependencies():
packages = [
"diffusers", # For Stable Diffusion
"transformers", # For Hugging Face models
"torch", # PyTorch
"accelerate", # For distributed training/inference
"gradio", # For the Gradio interface (updated to latest version)
"safetensors", # For safe model loading
"pillow", # For image processing
"sentencepiece"
]
for package in packages:
try:
import importlib
module = importlib.import_module(package)
print(f" {package} is installed. Version:")
except ImportError:
print(f" {package} is NOT installed.")
check_dependencies()
# Find the selected prompt and model
try:
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
model_name = next(m for m in models if m["alias"] == model_alias)["name"]
except StopIteration:
return None, "ERROR: Invalid prompt or model selected."
# Determine the enemy color
enemy_color = "blue" if team_color.lower() == "red" else "red"
# Print the original prompt and dynamic values for debugging
print("Original Prompt:")
print(prompt)
print(f"Enemy Color: {enemy_color}")
print(f"Team Color: {team_color.lower()}")
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)
# Print the formatted prompt for debugging
print("\nFormatted Prompt:")
print(prompt)
# Append the custom prompt (if provided)
if custom_prompt and len(custom_prompt.strip()) > 0:
prompt += " " + custom_prompt.strip()
# Randomize the seed if needed
if seed == -1:
seed = random.randint(0, 1000000)
try:
from diffusers import FluxPipeline
print("Initializing HF TOKEN")
hf_token = os.environ["HF_TOKEN"]
print(hf_token)
print("HF TOKEN:")
login(token=hf_token)
print("model_name:")
print(model_name)
# Use absolute path with leading slash
local_path = f"/data/{model_name}" # Changed from "data/" to "/data/"
print(f"Loading model from local path: {local_path}")
# Debug: Check if the directory exists and list its contents
if os.path.exists(local_path):
print("Directory exists. Contents:")
for item in os.listdir(local_path):
print(f" - {item}")
else:
print(f"Directory does not exist: {local_path}")
print("Contents of /data:")
print(os.listdir("/data"))
# CHECK FOR TORCH USING CUDA
print("CHECK FOR TORCH USING CUDA")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print("inside if")
print(f"CUDA device count: {torch.cuda.device_count()}")
print(f"Current device: {torch.cuda.current_device()}")
print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}")
########## INITIALIZING CPU PIPE ##########
print("-----INITIALIZING PIPE-----")
pipe = FluxPipeline.from_pretrained(
local_path,
torch_dtype=torch.bfloat16,
#torch_dtype=torch.float16,
#torch_dtype=torch.float32,
local_files_only=True
)
if torch.cuda.is_available():
print("CUDA available")
print("using gpu")
pipe = pipe.to("cuda")
pipe_message = "CUDA"
else:
print("CUDA not available")
print("using cpu")
pipe = pipe.to("cpu")
pipe_message = "CPU"
# pipe.enable_model_cpu_offload() # Use official recommended method
print(f"-----{pipe_message} PIPE INITIALIZED-----")
print(f"Using device: {pipe.device}")
except Exception as e:
print(f"Detailed error: {str(e)}")
return None, f"ERROR: Failed to initialize PIPE2. Details: {e}"
try:
print("-----SENDING IMG GEN TO PIPE-----")
print("-----HOLD ON-----")
# ################ LIVE PREVIEW TEST 3/3 ####################
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
# prompt=prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# output_type="pil",
# good_vae=good_vae,
# ):
# yield img, seed
# ############################################################
########## SENDING IMG GEN TO PIPE - WORKING CODE ##########
image = pipe(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
max_sequence_length=512,
# seed=seed
).images[0]
#############################################################
print("-----IMAGE GENERATED SUCCESSFULLY!-----")
print(image)
except Exception as e:
return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
try:
print("-----SAVING-----")
print("-----DONE!-----")
print("-----CALL THE BANNERS!-----")
# Save the image with a timestamped filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"/data/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
# Save the image using PIL's save method
image.save(output_filename)
print(f"File path: {output_filename}")
except Exception as e:
print(f"ERROR: Failed to save image. Details: {e}")
# Return the filename and success message
return image