Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL | |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
import modal | |
import random | |
import io | |
from config.config import prompts, models # Indirect import | |
import os | |
import sentencepiece | |
from huggingface_hub import login | |
from transformers import AutoTokenizer | |
from datetime import datetime | |
from PIL import Image | |
CACHE_DIR = "/model_cache" | |
# Define the Modal image | |
image = ( | |
modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") | |
.pip_install_from_requirements("requirements.txt") | |
#modal.Image.debian_slim(python_version="3.9") # Base image | |
# .apt_install( | |
# "git", | |
# ) | |
# .pip_install( | |
# "diffusers", | |
# f"git+https://github.com/huggingface/transformers.git" | |
# ) | |
.env( | |
{ | |
"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR | |
} | |
) | |
) | |
# Create a Modal app | |
app = modal.App("img-gen-modal-live", image=image) | |
with image.imports(): | |
import os | |
flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume | |
# GPU FUNCTION | |
def main(): | |
def latents_to_rgb(latents): | |
weights = ( | |
(60, -60, 25, -70), | |
(60, -5, 15, -50), | |
(60, 10, -5, -35), | |
) | |
weights_tensor = torch.t(torch.tensor(weights, dtype=latents.dtype).to(latents.device)) | |
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(latents.device) | |
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.unsqueeze(-1).unsqueeze(-1) | |
image_array = rgb_tensor.clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0) | |
return Image.fromarray(image_array) | |
def decode_tensors(pipe, step, timestep, callback_kwargs): | |
latents = callback_kwargs["latents"] | |
image = latents_to_rgb(latents[0]) | |
image.save(f"{step}.png") | |
return callback_kwargs | |
model_name = "FLUX.1-dev" | |
model_path = f"/data/{model_name}" | |
pipeline = DiffusionPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16, | |
use_safetensors=True | |
).to("cuda") | |
image = pipeline( | |
prompt="A croissant shaped like a cute bear.", | |
negative_prompt="Deformed, ugly, bad anatomy", | |
width=300, | |
height=200, | |
callback_on_step_end=decode_tensors, | |
callback_on_step_end_tensor_inputs=["latents"], | |
).images[0] | |