CtB-AI-img-gen / live-preview-example /app_live_example4.py
Andre
update 1.1
4f48282
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
import modal
import random
import io
from config.config import prompts, models # Indirect import
import os
import sentencepiece
from huggingface_hub import login
from transformers import AutoTokenizer
from datetime import datetime
from PIL import Image
CACHE_DIR = "/model_cache"
# Define the Modal image
image = (
modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9")
.pip_install_from_requirements("requirements.txt")
#modal.Image.debian_slim(python_version="3.9") # Base image
# .apt_install(
# "git",
# )
# .pip_install(
# "diffusers",
# f"git+https://github.com/huggingface/transformers.git"
# )
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR
}
)
)
# Create a Modal app
app = modal.App("img-gen-modal-live", image=image)
with image.imports():
import os
flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume
# GPU FUNCTION
@app.function(volumes={"/data": flux_model_vol},
secrets=[modal.Secret.from_name("huggingface-token")],
gpu="L40S",
timeout = 300
)
def main():
def latents_to_rgb(latents):
weights = (
(60, -60, 25, -70),
(60, -5, 15, -50),
(60, 10, -5, -35),
)
weights_tensor = torch.t(torch.tensor(weights, dtype=latents.dtype).to(latents.device))
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(latents.device)
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
image_array = rgb_tensor.clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
return Image.fromarray(image_array)
def decode_tensors(pipe, step, timestep, callback_kwargs):
latents = callback_kwargs["latents"]
image = latents_to_rgb(latents[0])
image.save(f"{step}.png")
return callback_kwargs
model_name = "FLUX.1-dev"
model_path = f"/data/{model_name}"
pipeline = DiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
use_safetensors=True
).to("cuda")
image = pipeline(
prompt="A croissant shaped like a cute bear.",
negative_prompt="Deformed, ugly, bad anatomy",
width=300,
height=200,
callback_on_step_end=decode_tensors,
callback_on_step_end_tensor_inputs=["latents"],
).images[0]