Spaces:
Sleeping
Sleeping
#img_gen_modal.py | |
import modal | |
import random | |
from datetime import datetime | |
import random | |
import io | |
from config.config import prompts, models # Indirect import | |
import os | |
import torch | |
from huggingface_hub import login | |
from transformers import AutoTokenizer | |
# Define the Modal image | |
image = ( | |
#modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") | |
modal.Image.debian_slim(python_version="3.9") # Base image | |
.apt_install( | |
"git", | |
) | |
.pip_install( | |
"diffusers", | |
"transformers", | |
"torch", | |
"accelerate", | |
"gradio>=4.44.1", | |
"safetensors", | |
"pillow", | |
"sentencepiece", | |
"hf_transfer", | |
"huggingface_hub[hf_transfer]", | |
"aria2", # aria2 for ultra-fast parallel downloads | |
f"git+https://github.com/huggingface/transformers.git" | |
) | |
.env( | |
{ | |
"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME" | |
} | |
) | |
) | |
# Create a Modal app | |
app = modal.App("img-gen-modal", image=image) | |
with image.imports(): | |
import diffusers | |
import os | |
import gradio | |
import torch | |
import sentencepiece | |
#flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume | |
def generate_image(): | |
import torch | |
from diffusers import FluxPipeline | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
prompt = "A cat holding a sign that says hello world" | |
image = pipe( | |
prompt, | |
height=1024, | |
width=1024, | |
guidance_scale=3.5, | |
num_inference_steps=50, | |
max_sequence_length=512, | |
generator=torch.Generator("cpu").manual_seed(0) | |
).images[0] | |
image.save("flux-dev.png") | |
generate_image() | |