File size: 5,652 Bytes
4f48282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# img_gen.py
#img_gen_modal.py
# img_gen.py
# img_gen_modal.py
import modal
import random
from datetime import datetime
import random
import io
from config.config import prompts, models  # Indirect import
import os
import torch
from huggingface_hub import login
from transformers import AutoTokenizer

CACHE_DIR = "/model_cache"

# Define the Modal image
image = (
    modal.Image.from_registry(
        "nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9"
    )
    .apt_install(
        "git",
    )
    .pip_install(
        "diffusers",
        "transformers",
        "torch",
        "accelerate",
        "gradio>=4.44.1",
        "safetensors",
        "pillow",
        "sentencepiece",
        "hf_transfer",
        "huggingface_hub[hf_transfer]",
        "aria2",  # aria2 for ultra-fast parallel downloads
        f"git+https://github.com/huggingface/transformers.git"
    )
    .env(
        {
            "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR
        }
    )
)

# Create a Modal app
app = modal.App("img-gen-modal", image=image)
with image.imports():
    import diffusers
    import os
    import gradio
    import torch
    import sentencepiece

flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True)  # Reference your volume

@app.function(gpu="t4", volumes={"/data": flux_model_vol},
              secrets=[modal.Secret.from_name("huggingface-token")],
              # gpu="a100-80gb"
              )
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
    # Find the selected prompt and model
    try:
        prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
        model_name = next(m for m in models if m["alias"] == model_alias)["name"]
    except StopIteration:
        return None, "ERROR: Invalid prompt or model selected."

    # Determine the enemy color
    enemy_color = "blue" if team_color.lower() == "red" else "red"

    # Print the original prompt and dynamic values for debugging
    print("Original Prompt:")
    print(prompt)
    print(f"Enemy Color: {enemy_color}")
    print(f"Team Color: {team_color.lower()}")

    prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)

    # Print the formatted prompt for debugging
    print("\nFormatted Prompt:")
    print(prompt)

    # Append the custom prompt (if provided)
    if custom_prompt and len(custom_prompt.strip()) > 0:
        prompt += " " + custom_prompt.strip()

    # Randomize the seed if needed
    if seed == -1:
        seed = random.randint(0, 1000000)

    # DOWNLOADING FROM HERE KEEPS THE /MODELS/ DIRECTORY
    # WITH A SCRIPT IT GOES AWAY
    # def download_flux():
    #     from huggingface_hub import snapshot_download
    #     import transformers

    #     repo_id = "black-forest-labs/FLUX.1-schnell"
    #     local_dir = "/data/models/FLUX.1-schnell"

    #     # **FASTEST METHOD:** Use max_workers for parallel download
    #     snapshot_download(
    #         repo_id,
    #         local_dir=local_dir,
    #         revision="main",
    #         #ignore_patterns=["*.pt", "*.bin"],  # Skip large model weights
    #         max_workers=8  # Higher concurrency for parallel chunk downloads
    #     )

    #     transformers.utils.move_cache()
    #     print(f"FLUX model downloaded to {local_dir}")
    # download_flux()

    try:
        from diffusers import FluxPipeline
        print("Initializing HF TOKEN")
        hf_token = os.environ["HF_TOKEN"]
        print(hf_token)
        print("HF TOKEN:")
        login(token=hf_token)
        print("model_name:")
        print(model_name)
        # First check if model exists in the volume
        local_path = "data/" + model_name
        print(f"Loading model from local path: {local_path}")
        # Debug: Check if the directory exists and list its contents
        for item in os.listdir(local_path):
                print(f" - {item}")

        print("Initializing PIPE")
        # Initialize the pipeline
        #cache_dir = "/cache_"
        pipe = FluxPipeline.from_pretrained(local_path, torch_dtype=torch.bfloat16,local_files_only=True,
            #cache_dir=cache_dir
        )
        pipe = pipe.to("cuda")

    except Exception as e:
        print(f"Detailed error: {str(e)}")
        return None, f"ERROR: Failed to initialize PIPE. Details: {e}"

    try:
        print("Sending img gen to pipe")
        image = pipe(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            # seed=seed
        ).images[0]
        image.save("image.png")

    except Exception as e:
        return None, f"ERROR: Failed to generate image. Details: {e}"

    # # Save the image with a timestamped filename
    # timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    # output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
    # try:
    #     # The pipeline typically returns images in a specific format
    #     # Usually it's image.images[0] for the first generated image
    #     image_output = image.images[0]  # Get the actual PIL Image from the output
    #     image_output.save(output_filename)  # Save using PIL's save method
    # except Exception as e:
    #     return None, f"ERROR: Failed to save image. Details: {e}"
    # print(f"Image output type: {type(image)}")
    # print(f"Image output attributes: {dir(image)}")