File size: 8,745 Bytes
4f48282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# img_gen.py
#img_gen_modal.py
# img_gen.py
# img_gen_modal.py
import modal
import random
import io
from config.config import prompts, models  # Indirect import
import os
import gradio as gr

CACHE_DIR = "/model_cache"

# Define the Modal image
image = (
    modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9")
    #modal.Image.debian_slim(python_version="3.9")  # Base image

    .apt_install(
        "git",
    )
    .pip_install(
        "diffusers",
        "transformers",
        "xformers",
        "torch",
        "accelerate",
        "gradio>=4.44.1",
        "safetensors",
        "pillow",
        "sentencepiece",
        "hf_transfer",
        "huggingface_hub[hf_transfer]",
        "aria2",  # aria2 for ultra-fast parallel downloads
        f"git+https://github.com/huggingface/transformers.git"
    )
    .env(
        {
            "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR
        }
    )
)

# Create a Modal app
app = modal.App("img-gen-modal-cpu", image=image)
with image.imports():
    import diffusers
    import os
    import torch
    import sentencepiece
    import torch
    from huggingface_hub import login
    from transformers import AutoTokenizer
    import random
    from datetime import datetime
    import xformers

flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True)  # Reference your volume


# CPU FUNCTION
@app.function(volumes={"/data": flux_model_vol},
              secrets=[modal.Secret.from_name("huggingface-token")],
              #gpu="L40S",
              cpu = 1,
              timeout = 300
              )
# MAIN GENERATE IMAGE FUNCTION
def generate_image(
                prompt_alias, 
                team_color, 
                model_alias, 
                custom_prompt, 
                height=360, 
                width=640, 
                num_inference_steps=20, 
                guidance_scale=2.0, 
                seed=-1, 
                progress=gr.Progress(track_tqdm=True)  # Add progress parameter
            ):
    with modal.enable_output():
        print("Hello from ctb_modal!")
        # progress(0, desc="Starting...")  # Initial progress
        # yield "Initializing image generation..."  # Yield the initial message

        print("Running debug check...")
        # Debug function to check installed packages
        def check_dependencies():
            packages = [
                "diffusers",  # For Stable Diffusion
                "transformers",  # For Hugging Face models
                "torch",  # PyTorch
                "accelerate",  # For distributed training/inference
                "gradio",  # For the Gradio interface (updated to latest version)
                "safetensors",  # For safe model loading
                "pillow",  # For image processing
                "sentencepiece"
            ]

            for package in packages:
                try:
                    import importlib
                    module = importlib.import_module(package)
                    print(f" {package} is installed. Version:")
                except ImportError:
                    print(f" {package} is NOT installed.")

        check_dependencies()
        # progress(0.2, desc="Preprocessing input...")
        # yield "Preprocessing inputs..."  # Yield the preprocessing message

        # Find the selected prompt and model
        try:
            prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
            model_name = next(m for m in models if m["alias"] == model_alias)["name"]
        except StopIteration:
            return None, "ERROR: Invalid prompt or model selected."

        # Determine the enemy color
        enemy_color = "blue" if team_color.lower() == "red" else "red"

        # Print the original prompt and dynamic values for debugging
        print("Original Prompt:")
        print(prompt)
        print(f"Enemy Color: {enemy_color}")
        print(f"Team Color: {team_color.lower()}")

        prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)

        # Print the formatted prompt for debugging
        print("\nFormatted Prompt:")
        print(prompt)

        # Append the custom prompt (if provided)
        if custom_prompt and len(custom_prompt.strip()) > 0:
            prompt += " " + custom_prompt.strip()

        # Randomize the seed if needed
        if seed == -1:
            seed = random.randint(0, 1000000)

        try:
            from diffusers import FluxPipeline
            print("Initializing HF TOKEN")
            hf_token = os.environ["HF_TOKEN"]
            print(hf_token)
            print("HF TOKEN:")
            login(token=hf_token)
            print("model_name:")
            print(model_name)
            
            # Use absolute path with leading slash
            local_path = f"/data/{model_name}"  # Changed from "data/" to "/data/"
            print(f"Loading model from local path: {local_path}")
            
            # Debug: Check if the directory exists and list its contents
            if os.path.exists(local_path):
                print("Directory exists. Contents:")
                for item in os.listdir(local_path):
                    print(f" - {item}")
            else:
                print(f"Directory does not exist: {local_path}")
                print("Contents of /data:")
                print(os.listdir("/data"))
            # CHECK FOR TORCH USING CUDA
            print("CHECK FOR TORCH USING CUDA")
            print(f"CUDA available: {torch.cuda.is_available()}")
            if torch.cuda.is_available():
                print("inside if")
                print(f"CUDA device count: {torch.cuda.device_count()}")
                print(f"Current device: {torch.cuda.current_device()}")
                print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}")
            
            # progress(0.5, desc="Running the model...")
            # yield "Running the model..."  # Yield the model running message

            # INITIALIZING CPU PIPE
            print("-----INITIALIZING PIPE-----")
            pipe = FluxPipeline.from_pretrained(
                local_path,
                torch_dtype=torch.bfloat16,
                #torch_dtype=torch.float16,
                #torch_dtype=torch.float32,
                local_files_only=True
            )

            if torch.cuda.is_available():
                print("CUDA available")
                print("using gpu")
                pipe = pipe.to("cuda")
                pipe_message = "CUDA"
            else:
                print("CUDA not available")
                print("using cpu")
                #pipe = pipe.to("cpu")
                pipe_message = "CPU"
            #pipe.enable_model_cpu_offload()  # Use official recommended method
            print(f"-----{pipe_message} PIPE INITIALIZED-----")
            print(f"Using device: {pipe.device}")
        except Exception as e:
            print(f"Detailed error: {str(e)}")
            return None, f"ERROR: Failed to initialize PIPE2. Details: {e}"
        try:
            print("-----SENDING IMG GEN TO PIPE-----")
            print("-----HOLD ON-----")
            # progress(0.8, desc="Postprocessing the output...")
            # yield "Postprocessing the output..."  # Yield the postprocessing message

            image = pipe(
                prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                max_sequence_length=512
                # seed=seed
            ).images[0]
            print("-----RENDER DONE!-----")
            print(image)           
        except Exception as e:
            return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
        
        try:
            print("-----IMAGE GENERATED SUCCESSFULLY!-----")
            print("-----CALL THE BANNERS!-----")
            print("-----SAVING TO DISK-----")
            # Save the image with a timestamped filename
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            output_filename = f"/data/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
            # Save the image using PIL's save method
            image.save(output_filename)
            print(f"File path: {output_filename}")
        except Exception as e:
            print(f"ERROR: Failed to save image. Details: {e}")
        # Return the filename and success message
        return image, "Image generated successfully! Call the banners!"