File size: 6,655 Bytes
4f48282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# img_gen.py
#img_gen_modal.py
# img_gen.py
# img_gen_modal.py
import modal
import random
import io
from config.config import prompts, models  # Indirect import
import os

CACHE_DIR = "/model_cache"

# Define the Modal image
image = (
    modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9")
    #modal.Image.debian_slim(python_version="3.9")  # Base image

    .apt_install(
        "git",
    )
    .pip_install(
        "diffusers",
        "transformers",
        "torch",
        "accelerate",
        "gradio>=4.44.1",
        "safetensors",
        "pillow",
        "sentencepiece",
        "hf_transfer",
        "huggingface_hub[hf_transfer]",
        "aria2",  # aria2 for ultra-fast parallel downloads
        f"git+https://github.com/huggingface/transformers.git"
    )
    .env(
        {
            "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR
        }
    )
)

# Create a Modal GPU app
app = modal.App("img-gen-modal-gpu", image=image)
with image.imports():
    import diffusers
    import os
    import gradio
    import torch
    import sentencepiece
    import torch
    from huggingface_hub import login
    from transformers import AutoTokenizer
    import random
    from datetime import datetime

flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True)  # Reference your volume


# CPU FUNCTION
@app.function(volumes={"/data": flux_model_vol},
              secrets=[modal.Secret.from_name("huggingface-token")],
              gpu="L40S"
              #memory = 70000
              )
# MAIN GENERATE IMAGE FUNCTION
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1):
        #with modal.enable_output():
        print("Hello from ctb_modal!")
        print("Running debug check...")
        # Debug function to check installed packages
        def check_dependencies():
            packages = [
                "diffusers",  # For Stable Diffusion
                "transformers",  # For Hugging Face models
                "torch",  # PyTorch
                "accelerate",  # For distributed training/inference
                "gradio",  # For the Gradio interface (updated to latest version)
                "safetensors",  # For safe model loading
                "pillow",  # For image processing
                "sentencepiece"
            ]

            for package in packages:
                try:
                    import importlib
                    module = importlib.import_module(package)
                    print(f" {package} is installed. Version:")
                except ImportError:
                    print(f" {package} is NOT installed.")

        check_dependencies()
        
        # Find the selected prompt and model
        try:
            prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
            model_name = next(m for m in models if m["alias"] == model_alias)["name"]
        except StopIteration:
            return None, "ERROR: Invalid prompt or model selected."

        # Determine the enemy color
        enemy_color = "blue" if team_color.lower() == "red" else "red"

        # Print the original prompt and dynamic values for debugging
        print("Original Prompt:")
        print(prompt)
        print(f"Enemy Color: {enemy_color}")
        print(f"Team Color: {team_color.lower()}")

        prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)

        # Print the formatted prompt for debugging
        print("\nFormatted Prompt:")
        print(prompt)

        # Append the custom prompt (if provided)
        if custom_prompt and len(custom_prompt.strip()) > 0:
            prompt += " " + custom_prompt.strip()

        # Randomize the seed if needed
        if seed == -1:
            seed = random.randint(0, 1000000)

        try:
            from diffusers import FluxPipeline
            print("Initializing HF TOKEN")
            hf_token = os.environ["HF_TOKEN"]
            print(hf_token)
            print("HF TOKEN:")
            login(token=hf_token)
            print("model_name:")
            print(model_name)
            
            # Use absolute path with leading slash
            local_path = f"/data/{model_name}"  # Changed from "data/" to "/data/"
            print(f"Loading model from local path: {local_path}")
            
            # Debug: Check if the directory exists and list its contents
            if os.path.exists(local_path):
                print("Directory exists. Contents:")
                for item in os.listdir(local_path):
                    print(f" - {item}")
            else:
                print(f"Directory does not exist: {local_path}")
                print("Contents of /data:")
                print(os.listdir("/data"))

            # INITIALIZING PIPE
            print("Initializing PIPE2")
            pipe = FluxPipeline.from_pretrained(
                local_path,
                torch_dtype=torch.bfloat16,
                local_files_only=True
            )
            #pipe.enable_model_cpu_offload()  # Use official recommended method
            #pipe = pipe.to("cuda")
            pipe = pipe.to("cuda")

        except Exception as e:
            print(f"Detailed error: {str(e)}")
            return None, f"ERROR: Failed to initialize PIPE. Details: {e}"
        try:
            print("Sending img gen to pipe")
            image = pipe(
                prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                # seed=seed
            ).images[0]
            print("render done")
            print(image)           
        except Exception as e:
            return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
        

        try:
            print("SAVING")
            # Save the image with a timestamped filename
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            output_filename = f"/data/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
            # Save the image using PIL's save method
            image.save(output_filename)
            print(f"Image saved! File path: {output_filename}")
        except Exception as e:
            print(f"ERROR: Failed to save image. Details: {e}")
        # Return the filename and success message
        return image, "Image generated successfully!"