Spaces:
Sleeping
Sleeping
File size: 4,425 Bytes
4f48282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# img_gen.py
#img_gen_modal.py
# img_gen.py
# img_gen_modal.py
import modal
import random
from datetime import datetime
import random
import io
from config.config import prompts, models # Indirect import
import os
import torch
from huggingface_hub import login
from transformers import AutoTokenizer
# Define the Modal image
image = (
#modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9")
modal.Image.debian_slim(python_version="3.9") # Base image
.apt_install(
"git",
)
.pip_install(
"diffusers",
"transformers",
"torch",
"accelerate",
"gradio>=4.44.1",
"safetensors",
"pillow",
"sentencepiece",
"hf_transfer",
"huggingface_hub[hf_transfer]",
"aria2", # aria2 for ultra-fast parallel downloads
f"git+https://github.com/huggingface/transformers.git"
)
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME"
}
)
)
# Create a Modal app
app = modal.App("img-gen-modal", image=image)
with image.imports():
import diffusers
import os
import gradio
import torch
import sentencepiece
#flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume
@app.function(
secrets=[modal.Secret.from_name("huggingface-token")],
#volumes={"/data": flux_model_vol},
gpu="a100-80gb"
)
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=36, width=64, num_inference_steps=2, guidance_scale=2.0, seed=-1):
# Find the selected prompt and model
try:
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
model_name = next(m for m in models if m["alias"] == model_alias)["name"]
except StopIteration:
return None, "ERROR: Invalid prompt or model selected."
# Determine the enemy color
enemy_color = "blue" if team_color.lower() == "red" else "red"
# Print the original prompt and dynamic values for debugging
print("Original Prompt:")
print(prompt)
print(f"Enemy Color: {enemy_color}")
print(f"Team Color: {team_color.lower()}")
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)
# Print the formatted prompt for debugging
print("\nFormatted Prompt:")
print(prompt)
# Append the custom prompt (if provided)
if custom_prompt and len(custom_prompt.strip()) > 0:
prompt += " " + custom_prompt.strip()
# Randomize the seed if needed
if seed == -1:
seed = random.randint(0, 1000000)
try:
from diffusers import DiffusionPipeline
print("Initializing HF TOKEN")
hf_token = os.environ["HF_TOKEN"]
print(hf_token)
print("HF TOKEN:")
login(token=hf_token)
print("model_name:")
print(model_name)
print("Initializing PIPE")
pipe = DiffusionPipeline.from_pretrained(model_name)
pipe = pipe.to("cuda")
except Exception as e:
print(f"Detailed error: {str(e)}")
return None, f"ERROR: Failed to initialize PIPE. Details: {e}"
try:
print("Sending img gen to pipe")
image = pipe(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
# seed=seed
).images[0]
image.save("image.png")
except Exception as e:
return None, f"ERROR: Failed to generate image. Details: {e}"
# Save the image with a timestamped filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
try:
# The pipeline typically returns images in a specific format
# Usually it's image.images[0] for the first generated image
image_output = image.images[0] # Get the actual PIL Image from the output
image_output.save(output_filename) # Save using PIL's save method
except Exception as e:
return None, f"ERROR: Failed to save image. Details: {e}"
print(f"Image output type: {type(image)}")
print(f"Image output attributes: {dir(image)}")
return output_filename, "Image generated successfully!" |