File size: 4,177 Bytes
4f48282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# img_gen_modal.py
import modal
import random
from datetime import datetime
import random
import io
from config.config import prompts, models  # Indirect import
import os
import torch
from huggingface_hub import login
from transformers import AutoTokenizer

# Define the Modal image
image = (
    modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9")
    .apt_install(
        "git",
    )
    .pip_install(
        "diffusers",
        "transformers",
        "torch",
        "accelerate",
        "gradio>=4.44.1",
        "safetensors",
        "pillow",
        "sentencepiece",
        "hf_transfer",
        "huggingface_hub[hf_transfer]",
        "aria2",  # aria2 for ultra-fast parallel downloads
        f"git+https://github.com/huggingface/transformers.git",
        f"git+https://github.com/huggingface/diffusers.git"
    )
    .env(
        {
            "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME"
        }
    )
)

# Create a Modal app
app = modal.App("img-gen-modal", image=image)
with image.imports():
    import diffusers
    import os
    import gradio
    import torch
    import sentencepiece
    import transformers


@app.function(
    secrets=[modal.Secret.from_name("huggingface-token")],
    gpu="t4",
    timeout=600
)
def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640,
                   num_inference_steps=20, guidance_scale=2.0, seed=-1):
    import torch
    import diffusers  # Corrected import

    # Find the selected prompt and model
    try:
        prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
        model_name = next(m for m in models if m["alias"] == model_alias)["name"]
    except StopIteration:
        return None, "ERROR: Invalid prompt or model selected."

    # Determine the enemy color
    enemy_color = "blue" if team_color.lower() == "red" else "red"

    # Print the original prompt and dynamic values for debugging
    print("Original Prompt:")
    print(prompt)
    print(f"Enemy Color: {enemy_color}")
    print(f"Team Color: {team_color.lower()}")

    # Format the prompt
    prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)

    # Print the formatted prompt for debugging
    print("\nFormatted Prompt:")
    print(prompt)

    # Append custom prompt if provided
    if custom_prompt and len(custom_prompt.strip()) > 0:
        prompt += " " + custom_prompt.strip()

    # Randomize seed if needed
    if seed == -1:
        seed = random.randint(0, 1000000)

    # Initialize the pipeline
    try:
        # Corrected import statement
        # HF LOGIN 
        print("Initializing HF TOKEN")
        hf_token = os.environ["HF_TOKEN"]
        print(hf_token)
        print("HF TOKEN:")
        login(token=hf_token)
        print("model_name:")
        print(model_name)
        
        from diffusers import FluxPipeline  # Replace with the correct pipeline if FluxPipeline is not available
        # Use a standard pipeline for now
        pipe = FluxPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.bfloat16)
        pipe = pipe.to("cuda")
    except Exception as e:
        return None, f"ERROR: Failed to initialize pipeline. Details: {e}"

    # Generate the image
    try:
        image = pipe(
            prompt,
            height=height,
            width=width,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=torch.Generator("cuda").manual_seed(seed)
        ).images[0]
        image.save("generated_image.png")
    except Exception as e:
        return None, f"ERROR: Failed to generate image. Details: {e}"

    # Save the image with a timestamped filename
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
    try:
        image.save(output_filename)
    except Exception as e:
        return None, f"ERROR: Failed to save image. Details: {e}"

    return output_filename, "Image generated successfully!"