File size: 1,266 Bytes
4f48282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
def latents_to_rgb(latents):
    weights = (
        (60, -60, 25, -70),
        (60,  -5, 15, -50),
        (60,  10, -5, -35),
    )

    weights_tensor = torch.t(torch.tensor(weights, dtype=latents.dtype).to(latents.device))
    biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(latents.device)
    rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
    image_array = rgb_tensor.clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)

    return Image.fromarray(image_array)

def decode_tensors(pipe, step, timestep, callback_kwargs):
    latents = callback_kwargs["latents"]

    image = latents_to_rgb(latents[0])
    image.save(f"{step}.png")

    return callback_kwargs



from diffusers import AutoPipelineForText2Image
import torch
from PIL import Image

pipeline = AutoPipelineForText2Image.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
).to("cuda")

image = pipeline(
    prompt="A croissant shaped like a cute bear.",
    negative_prompt="Deformed, ugly, bad anatomy",
    callback_on_step_end=decode_tensors,
    callback_on_step_end_tensor_inputs=["latents"],
).images[0]