File size: 6,801 Bytes
4f48282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# img_gen.py
import random
import io
from config.config import prompts, models  # Indirect import
import os
import gradio as gr
import diffusers
import os
import torch
import sentencepiece
import torch
from huggingface_hub import login
from transformers import AutoTokenizer
import random
from datetime import datetime

# MAIN GENERATE IMAGE FUNCTION
def generate_image(prompt_alias, 
                   team_color, 
                   model_alias, 
                   custom_prompt, 
                   height=360, 
                   width=640, 
                   num_inference_steps=20, 
                   guidance_scale=2.0, 
                   seed=-1, 
                   progress=gr.Progress(track_tqdm=True)  # Add progress parameter
            ):
    print("Hello from ctb_modal!")
    # progress(0, desc="Starting...")  # Initial progress
    # yield "Initializing image generation..."  # Yield the initial message

    print("Running debug check...")
    # Debug function to check installed packages
    def check_dependencies():
        packages = [
            "diffusers",  # For Stable Diffusion
            "transformers",  # For Hugging Face models
            "torch",  # PyTorch
            "accelerate",  # For distributed training/inference
            "gradio",  # For the Gradio interface (updated to latest version)
            "safetensors",  # For safe model loading
            "pillow",  # For image processing
            "sentencepiece"
        ]

        for package in packages:
            try:
                import importlib
                module = importlib.import_module(package)
                print(f" {package} is installed. Version:")
            except ImportError:
                print(f" {package} is NOT installed.")

    check_dependencies()
    # progress(0.2, desc="Preprocessing input...")
    # yield "Preprocessing inputs..."  # Yield the preprocessing message

    # Find the selected prompt and model
    try:
        prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
        model_name = next(m for m in models if m["alias"] == model_alias)["name"]
    except StopIteration:
        return None, "ERROR: Invalid prompt or model selected."

    # Determine the enemy color
    enemy_color = "blue" if team_color.lower() == "red" else "red"

    # Print the original prompt and dynamic values for debugging
    print("Original Prompt:")
    print(prompt)
    print(f"Enemy Color: {enemy_color}")
    print(f"Team Color: {team_color.lower()}")

    prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)

    # Print the formatted prompt for debugging
    print("\nFormatted Prompt:")
    print(prompt)

    # Append the custom prompt (if provided)
    if custom_prompt and len(custom_prompt.strip()) > 0:
        prompt += " " + custom_prompt.strip()

    # Randomize the seed if needed
    if seed == -1:
        seed = random.randint(0, 1000000)

    try:
        from diffusers import FluxPipeline
        print("Initializing HF TOKEN")
        hf_token = os.environ["HF_TOKEN"]
        print(hf_token)
        print("HF TOKEN:")
        login(token=hf_token)
        print("model_name:")
        print(model_name)
        
        # Use absolute path with leading slash
        local_path = f"{model_name}"  # Changed from "data/" to "/data/"
        print(f"Loading model from local path: {local_path}")
        
        # Debug: Check if the directory exists and list its contents
        if os.path.exists(local_path):
            print("Directory exists. Contents:")
            for item in os.listdir(local_path):
                print(f" - {item}")
        else:
            print(f"Directory does not exist: {local_path}")
            print("Contents of /:")
            print(os.listdir("/"))
        # CHECK FOR TORCH USING CUDA
        print("CHECK FOR TORCH USING CUDA")
        print(f"CUDA available: {torch.cuda.is_available()}")
        if torch.cuda.is_available():
            print("inside if")
            print(f"CUDA device count: {torch.cuda.device_count()}")
            print(f"Current device: {torch.cuda.current_device()}")
            print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}")
        
        # progress(0.5, desc="Running the model...")
        # yield "Running the model..."  # Yield the model running message

        # INITIALIZING CPU PIPE
        print("-----INITIALIZING PIPE-----")
        pipe = FluxPipeline.from_pretrained(
            local_path,
            torch_dtype=torch.bfloat16,
            #torch_dtype=torch.float16,
            #torch_dtype=torch.float32,
            local_files_only=True
        )

        if torch.cuda.is_available():
            print("CUDA available")
            print("using gpu")
            pipe = pipe.to("cuda")
            pipe_message = "CUDA"
        else:
            print("CUDA not available")
            print("using cpu")
            #pipe = pipe.to("cpu")
            pipe_message = "CPU"
        #pipe.enable_model_cpu_offload()  # Use official recommended method
        print(f"-----{pipe_message} PIPE INITIALIZED-----")
        print(f"Using device: {pipe.device}")
    except Exception as e:
        print(f"Detailed error: {str(e)}")
        return None, f"ERROR: Failed to initialize PIPE2. Details: {e}"
    try:
        print("-----SENDING IMG GEN TO PIPE-----")
        print("-----HOLD ON-----")
        # progress(0.8, desc="Postprocessing the output...")
        # yield "Postprocessing the output..."  # Yield the postprocessing message

        image = pipe(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            max_sequence_length=512
            # seed=seed
        ).images[0]
        print("-----RENDER DONE!-----")
        print(image)           
    except Exception as e:
        return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
    
    try:
        print("-----IMAGE GENERATED SUCCESSFULLY!-----")
        print("-----CALL THE BANNERS!-----")
        print("-----SAVING TO DISK-----")
        # Save the image with a timestamped filename
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        output_filename = f"/data/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
        # Save the image using PIL's save method
        image.save(output_filename)
        print(f"File path: {output_filename}")
    except Exception as e:
        print(f"ERROR: Failed to save image. Details: {e}")
    # Return the filename and success message
    return image, "Image generated successfully! Call the banners!"