andreped commited on
Commit
faf3b5a
·
0 Parent(s):

initial commit

Browse files
Files changed (6) hide show
  1. LICENSE +21 -0
  2. README.md +33 -0
  3. figures/Segmentation_CustusX.PNG +0 -0
  4. livermask/livermask.py +140 -0
  5. requirements.txt +40 -0
  6. setup.py +37 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2020 André Pedersen
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Automatic liver segmentation in CT using deep learning
2
+
3
+ #### NOTE: Trained 2D model on the LITS dataset is automatically downloaded when running the inference script and can be used as you wish, but please, give credit. ENJOY! :)
4
+
5
+
6
+ ![Screenshot](figures/Segmentation_CustusX.PNG)
7
+
8
+ The figure shows a predicted liver with the corresponding patient CT in 3DSlicer. It is the Volume-10 from the LITS17 dataset.
9
+
10
+ First of all:
11
+ The LITS dataset can be accessible from here (https://competitions.codalab.org), and the corresponding paper for the challenge (Bilic. P et al.. (2019). The Liver Tumor Segmentation Benchmark (LiTS). https://arxiv.org/abs/1901.04056). If trained model is used please cite this paper.
12
+
13
+ Usage:
14
+ > git clone https://github.com/andreped/livermask.git \
15
+ > cd livermask \
16
+ > python3 -m venv venv \
17
+ > python -m pip install -r /path/to/requirements.txt . \ <- might want to run > python setup.py bdist_wheel < before
18
+ > cd livermask \
19
+ > python livermask.py "path_to_ct_nifti.nii" "output_name.nii"
20
+
21
+ If you lack any modules after, try installing them through setup.py (could be done instead of using requirements.txt):
22
+ > pip install wheel \
23
+ > python setup.py bdist_wheel
24
+
25
+ NOTE: Currently, model only works for the nifti format, and outputs a binary volume in the same format (*.nii). But this format can be imported in CustusX. I wouldn't recommend mixing DICOM and .nii prediction file in CustusX, as there seem to be some orientation issues between these (bug to be fixed in the future). But simply convert DICOM -> NIFTI using the command-line tool dcm2niix (https://github.com/rordenlab/dcm2niix).
26
+
27
+ Convert DICOM -> NIFTI doing this:
28
+ > dcm2niix -s y -m y -d 1 "path_to_CT_folder" "output_name"
29
+
30
+ Note that "-d 1" assumed that "path_to_CT_folder" is the folder just before the set of DICOM scans you want to import and convert. This can be removed if you want to convert multiple ones at the same time. It is possible to set "." for "output_name", which in theory should output a file with the same name as the DICOM folder, but that doesn't seem to happen...
31
+
32
+ A few final notes:
33
+ 1) If you get SSLError during downloading the model, disable VPN, e.g. cisco. For those on the sintef network, try changing network to Eduroam or similar, as it might be a most-famous evry-issue...
figures/Segmentation_CustusX.PNG ADDED
livermask/livermask.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import os, sys
3
+ import h5py
4
+ from tqdm import tqdm
5
+ import nibabel as nib
6
+ from nibabel.processing import resample_to_output, resample_from_to
7
+ from scipy.ndimage import zoom
8
+ from tensorflow.python.keras.models import load_model
9
+ import gdown
10
+ from skimage.morphology import remove_small_holes, binary_dilation, binary_erosion, ball
11
+ from skimage.measure import label, regionprops
12
+ import warnings
13
+ warnings.filterwarnings('ignore', '.*output shape of zoom.*')
14
+
15
+ def intensity_normalization(volume, intensity_clipping_range):
16
+ result = np.copy(volume)
17
+
18
+ result[volume < intensity_clipping_range[0]] = intensity_clipping_range[0]
19
+ result[volume > intensity_clipping_range[1]] = intensity_clipping_range[1]
20
+
21
+ min_val = np.amin(result)
22
+ max_val = np.amax(result)
23
+ if (max_val - min_val) != 0:
24
+ result = (result - min_val) / (max_val - min_val)
25
+
26
+ return result
27
+
28
+ def post_process(pred):
29
+ return pred
30
+
31
+ def get_model():
32
+ url = "https://drive.google.com/uc?id=181VE-FiqZ2z7xY30LK9GIvLeEEJW0YF-"
33
+ output = "model.h5"
34
+ md5 = "ef5a6dfb794b39bea03f5496a9a49d4d"
35
+ gdown.cached_download(url, output, md5=md5) #, postprocess=gdown.extractall)
36
+
37
+ def func(path, output):
38
+
39
+ cwd = "/".join(os.path.realpath(__file__).replace("\\", "/").split("/")[:-1]) + "/"
40
+
41
+ #print(cwd)
42
+ #print(" :) ")
43
+
44
+ name = cwd + "model.h5"
45
+ #name = "\.model.h5"
46
+
47
+ # get model
48
+ get_model()
49
+
50
+ # load model
51
+ model = load_model(name, compile=False)
52
+
53
+ print("preprocessing...")
54
+ nib_volume = nib.load(path)
55
+ new_spacing = [1., 1., 1.]
56
+ resampled_volume = resample_to_output(nib_volume, new_spacing, order=1)
57
+ data = resampled_volume.get_data().astype('float32')
58
+
59
+ curr_shape = data.shape
60
+
61
+ # resize to get (512, 512) output images
62
+ img_size = 512
63
+ data = zoom(data, [img_size / data.shape[0], img_size / data.shape[1], 1.0], order=1)
64
+
65
+ # intensity normalization
66
+ intensity_clipping_range = [-150, 250] # HU clipping limits (Pravdaray's configs)
67
+ data = intensity_normalization(volume=data, intensity_clipping_range=intensity_clipping_range)
68
+
69
+ # fix orientation
70
+ data = np.rot90(data, k=1, axes=(0, 1))
71
+ data = np.flip(data, axis=0)
72
+
73
+ print("predicting...")
74
+ # predict on data
75
+ pred = np.zeros_like(data).astype(np.float32)
76
+ for i in tqdm(range(data.shape[-1]), "pred: "):
77
+ pred[..., i] = model.predict(np.expand_dims(np.expand_dims(np.expand_dims(data[..., i], axis=0), axis=-1), axis=0))[0, ..., 1]
78
+ del data
79
+
80
+ # threshold
81
+ pred = (pred >= 0.4).astype(int)
82
+
83
+ # fix orientation back
84
+ pred = np.flip(pred, axis=0)
85
+ pred = np.rot90(pred, k=-1, axes=(0, 1))
86
+
87
+ print("resize back...")
88
+ # resize back from 512x512
89
+ pred = zoom(pred, [curr_shape[0] / img_size, curr_shape[1] / img_size, 1.0], order=1)
90
+ pred = (pred >= 0.5).astype(np.float32)
91
+
92
+ print("morphological post-processing...")
93
+ # morpological post-processing
94
+ # 1) first erode
95
+ pred = binary_erosion(pred.astype(bool), ball(3)).astype(np.float32)
96
+
97
+ # 2) keep only largest connected component
98
+ labels = label(pred)
99
+ regions = regionprops(labels)
100
+ area_sizes = []
101
+ for region in regions:
102
+ area_sizes.append([region.label, region.area])
103
+ area_sizes = np.array(area_sizes)
104
+ tmp = np.zeros_like(pred)
105
+ tmp[labels == area_sizes[np.argmax(area_sizes[:, 1]), 0]] = 1
106
+ pred = tmp.copy()
107
+ del tmp, labels, regions, area_sizes
108
+
109
+ # 3) dilate
110
+ pred = binary_dilation(pred.astype(bool), ball(3))
111
+
112
+ # 4) remove small holes
113
+ pred = remove_small_holes(pred.astype(bool), area_threshold=0.001*np.prod(pred.shape)).astype(np.float32)
114
+
115
+ print("saving...")
116
+ pred = pred.astype(np.uint8)
117
+ img = nib.Nifti1Image(pred, affine=resampled_volume.affine)
118
+ resampled_lab = resample_from_to(img, nib_volume, order=0)
119
+ nib.save(resampled_lab, output)
120
+
121
+
122
+ def main():
123
+ os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
124
+
125
+ #__os.path
126
+
127
+ path = sys.argv[1]
128
+ output = sys.argv[2]
129
+ #output = sys.argv[3]
130
+
131
+ func(path, output)
132
+
133
+
134
+ if __name__ == "__main__":
135
+ main()
136
+
137
+
138
+
139
+
140
+
requirements.txt ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==0.9.0
2
+ astor==0.8.1
3
+ certifi==2019.11.28
4
+ chardet==3.0.4
5
+ cycler==0.10.0
6
+ decorator==4.4.1
7
+ filelock==3.0.12
8
+ gast==0.3.3
9
+ gdown==3.10.1
10
+ grpcio==1.26.0
11
+ h5py==2.10.0
12
+ idna==2.8
13
+ imageio==2.6.1
14
+ Keras-Applications==1.0.8
15
+ Keras-Preprocessing==1.1.0
16
+ kiwisolver==1.1.0
17
+ livermask==0.1
18
+ Markdown==3.2
19
+ matplotlib==3.1.3
20
+ mock==4.0.1
21
+ networkx==2.4
22
+ nibabel==3.0.1
23
+ numpy==1.18.1
24
+ Pillow==7.0.0
25
+ protobuf==3.11.3
26
+ pyparsing==2.4.6
27
+ PySocks==1.7.1
28
+ python-dateutil==2.8.1
29
+ PyWavelets==1.1.1
30
+ requests==2.22.0
31
+ scikit-image==0.16.2
32
+ scipy==1.4.1
33
+ six==1.14.0
34
+ tensorboard==1.13.1
35
+ tensorflow==1.13.1
36
+ tensorflow-estimator==1.13.0
37
+ termcolor==1.1.0
38
+ tqdm==4.42.1
39
+ urllib3==1.25.8
40
+ Werkzeug==1.0.0
setup.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import setuptools
2
+
3
+ with open("README.md", "r") as fh:
4
+ long_description = fh.read()
5
+
6
+ setuptools.setup(
7
+ name='livermask',
8
+ version='0.1',
9
+ author="Andre Pedersen",
10
+ author_email="[email protected]",
11
+ description="A package for automatic segmentation of liver from CT data",
12
+ long_description=long_description,
13
+ long_description_content_type="text/markdown",
14
+ url="https://github.com/andreped/livermask",
15
+ packages=setuptools.find_packages(),
16
+ entry_points={
17
+ 'console_scripts': [
18
+ 'livermask = livermask.livermask:main'
19
+ ]
20
+ },
21
+ install_requires=[
22
+ 'tensorflow==1.13.1',
23
+ 'numpy',
24
+ 'scipy',
25
+ 'tqdm',
26
+ 'nibabel',
27
+ 'h5py',
28
+ 'gdown',
29
+ 'scikit-image'
30
+ ],
31
+ classifiers=[
32
+ "Programming Language :: Python :: 3",
33
+ "License :: OSI Approved :: MIT License",
34
+ "Operating System :: OS Independent",
35
+ ],
36
+ python_requires='>=3.6',
37
+ )