Dockerized livermask and app
Browse files- README.md +0 -10
- demo/Dockerfile +31 -0
- demo/README.md +13 -0
- demo/app.py +13 -2
- demo/requirements.txt +2 -0
README.md
CHANGED
|
@@ -1,13 +1,3 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: 'livermask: Automatic Liver Parenchyma and vessel segmentation in CT'
|
| 3 |
-
colorFrom: indigo
|
| 4 |
-
sdk: gradio
|
| 5 |
-
sdk_version: 3.32.0
|
| 6 |
-
emoji: 🚀
|
| 7 |
-
pinned: false
|
| 8 |
-
license: mit
|
| 9 |
-
app_file: demo/app.py
|
| 10 |
-
---
|
| 11 |
<div align="center">
|
| 12 |
<h1 align="center">livermask</h1>
|
| 13 |
<h3 align="center">Automatic liver parenchyma and vessel segmentation in CT using deep learning</h3>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
<div align="center">
|
| 2 |
<h1 align="center">livermask</h1>
|
| 3 |
<h3 align="center">Automatic liver parenchyma and vessel segmentation in CT using deep learning</h3>
|
demo/Dockerfile
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.7
|
| 5 |
+
|
| 6 |
+
WORKDIR /code
|
| 7 |
+
|
| 8 |
+
# install dependencies
|
| 9 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 10 |
+
RUN python3 -m pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 11 |
+
|
| 12 |
+
# resolve issue with tf==2.4 and gradio versioning issue
|
| 13 |
+
RUN python3 -m pip install --force-reinstall typing_extensions==4.0.0
|
| 14 |
+
|
| 15 |
+
# Set up a new user named "user" with user ID 1000
|
| 16 |
+
RUN useradd -m -u 1000 user
|
| 17 |
+
|
| 18 |
+
# Switch to the "user" user
|
| 19 |
+
USER user
|
| 20 |
+
|
| 21 |
+
# Set home to the user's home directory
|
| 22 |
+
ENV HOME=/home/user \
|
| 23 |
+
PATH=/home/user/.local/bin:$PATH
|
| 24 |
+
|
| 25 |
+
# Set the working directory to the user's home directory
|
| 26 |
+
WORKDIR $HOME/app
|
| 27 |
+
|
| 28 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 29 |
+
COPY --chown=user . $HOME/app
|
| 30 |
+
|
| 31 |
+
CMD ["python3", "app.py"]
|
demo/README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: 'livermask: Automatic Liver Parenchyma and vessel segmentation in CT'
|
| 3 |
+
colorFrom: indigo
|
| 4 |
+
colorTo: indigo
|
| 5 |
+
sdk: docker
|
| 6 |
+
app_port: 7860
|
| 7 |
+
emoji: 🚀
|
| 8 |
+
pinned: false
|
| 9 |
+
license: mit
|
| 10 |
+
app_file: demo/app.py
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# livermask Hugging Face demo - through docker SDK
|
demo/app.py
CHANGED
|
@@ -27,7 +27,17 @@ def nifti_to_glb(path):
|
|
| 27 |
|
| 28 |
|
| 29 |
def run_model(input_path):
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def load_mesh(mesh_file_name):
|
|
@@ -38,6 +48,7 @@ def load_mesh(mesh_file_name):
|
|
| 38 |
|
| 39 |
|
| 40 |
if __name__ == "__main__":
|
|
|
|
| 41 |
demo = gr.Interface(
|
| 42 |
fn=load_mesh,
|
| 43 |
inputs=gr.UploadButton(label="Click to Upload a File", file_types=[".nii", ".nii.nz"], file_count="single"),
|
|
@@ -45,4 +56,4 @@ if __name__ == "__main__":
|
|
| 45 |
title="livermask: Automatic Liver Parenchyma segmentation in CT",
|
| 46 |
description="Using pretrained deep learning model trained on the LiTS17 dataset",
|
| 47 |
)
|
| 48 |
-
demo.launch()
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
def run_model(input_path):
|
| 30 |
+
from livermask.utils.run import run_analysis
|
| 31 |
+
|
| 32 |
+
run_analysis(cpu=False, extension='.nii', path=input_path, output='prediction', verbose=True, vessels=False)
|
| 33 |
+
|
| 34 |
+
#cmd_docker = ["python3", "-m", "livermask.livermask", "--input", input_path, "--output", "prediction", "--verbose"]
|
| 35 |
+
#sp.check_call(cmd_docker, shell=True) # @FIXME: shell=True here is not optimal -> starts a shell after calling script
|
| 36 |
+
|
| 37 |
+
#p = sp.Popen(cmd_docker, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 38 |
+
#stdout, stderr = p.communicate()
|
| 39 |
+
#print("stdout:", stdout)
|
| 40 |
+
#print("stderr:", stderr)
|
| 41 |
|
| 42 |
|
| 43 |
def load_mesh(mesh_file_name):
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
if __name__ == "__main__":
|
| 51 |
+
print("Launching demo...")
|
| 52 |
demo = gr.Interface(
|
| 53 |
fn=load_mesh,
|
| 54 |
inputs=gr.UploadButton(label="Click to Upload a File", file_types=[".nii", ".nii.nz"], file_count="single"),
|
|
|
|
| 56 |
title="livermask: Automatic Liver Parenchyma segmentation in CT",
|
| 57 |
description="Using pretrained deep learning model trained on the LiTS17 dataset",
|
| 58 |
)
|
| 59 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
demo/requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
livermask @ git+https://github.com/andreped/livermask.git
|
| 2 |
+
gradio==3.32.0
|