import streamlit as st from llama_index import VectorStoreIndex, ServiceContext, set_global_service_context from llama_index.llms import AzureOpenAI from llama_index.embeddings import OpenAIEmbedding import json import os from llama_index import SimpleDirectoryReader # Load config values with open(r'config.json') as config_file: config_details = json.load(config_file) # Initialize message history st.header("Chat with André's research 💬 📚") if "messages" not in st.session_state.keys(): # Initialize the chat message history st.session_state.messages = [ {"role": "assistant", "content": "Ask me a question about André's research!"} ] @st.cache_resource(show_spinner=False) def load_data(): with st.spinner(text="Loading and indexing the Streamlit docs – hang tight! This should take 1-2 minutes."): documents = SimpleDirectoryReader(input_dir="./data", recursive=True).load_data() llm = AzureOpenAI( model="gpt-3.5-turbo", engine="chatbot-streamlit", temperature=0.5, api_key=os.getenv("OPENAI_API_KEY"), api_base=config_details['OPENAI_API_BASE'], api_type="azure", api_version=config_details['OPENAI_API_VERSION'], system_prompt="You are an expert on the Streamlit Python library and your job is to answer technical questions. Assume that all questions are related to the Streamlit Python library. Keep your answers technical and based on facts – do not hallucinate features." ) # You need to deploy your own embedding model as well as your own chat completion model embed_model = OpenAIEmbedding( model="text-embedding-ada-002", deployment_name="chatbot-streamlit-embedding", api_key=os.getenv("OPENAI_API_KEY"), api_base=config_details['OPENAI_API_BASE'], api_type="azure", api_version=config_details['OPENAI_API_VERSION'], ) service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) set_global_service_context(service_context) index = VectorStoreIndex.from_documents(documents) #, service_context=service_context) return index def main(): index = load_data() chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True) if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history st.session_state.messages.append({"role": "user", "content": prompt}) for message in st.session_state.messages: # Display the prior chat messages with st.chat_message(message["role"]): st.write(message["content"]) # If last message is not from assistant, generate a new response if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = chat_engine.chat(prompt) st.write(response.response) message = {"role": "assistant", "content": response.response} st.session_state.messages.append(message) # Add response to message history if __name__ == "__main__": main()