Spaces:
Build error
Build error
Merge pull request #1 from andreped/dev
Browse filesAdded OpenAI key to secrets; improved verbose; added Redirect class for stdout logging
- .gitignore +2 -0
- app.py +13 -8
- chatbot/{utils.py → data.py} +22 -13
- chatbot/redirect.py +165 -0
.gitignore
CHANGED
@@ -2,3 +2,5 @@ venv/
|
|
2 |
data/
|
3 |
.DS_Store
|
4 |
config.json
|
|
|
|
|
|
2 |
data/
|
3 |
.DS_Store
|
4 |
config.json
|
5 |
+
.streamlit/
|
6 |
+
secrets.toml
|
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
-
import
|
2 |
|
3 |
import streamlit as st
|
4 |
|
5 |
-
from chatbot.
|
6 |
-
from chatbot.
|
|
|
|
|
|
|
7 |
|
8 |
# Initialize message history
|
9 |
st.header("Chat with André's research 💬 📚")
|
@@ -11,15 +14,17 @@ st.header("Chat with André's research 💬 📚")
|
|
11 |
if "messages" not in st.session_state.keys(): # Initialize the chat message history
|
12 |
st.session_state.messages = [{"role": "assistant", "content": "Ask me a question about André's research!"}]
|
13 |
|
14 |
-
# Load config values
|
15 |
-
with open(r"config.json") as config_file:
|
16 |
-
config_details = json.load(config_file)
|
17 |
-
|
18 |
|
19 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# setup dataset
|
21 |
download_test_data()
|
22 |
-
index = load_data(
|
23 |
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
|
24 |
|
25 |
if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
|
|
|
1 |
+
import os
|
2 |
|
3 |
import streamlit as st
|
4 |
|
5 |
+
from chatbot.data import download_test_data
|
6 |
+
from chatbot.data import load_data
|
7 |
+
|
8 |
+
# add OpenAI API key to environemntal variables
|
9 |
+
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
10 |
|
11 |
# Initialize message history
|
12 |
st.header("Chat with André's research 💬 📚")
|
|
|
14 |
if "messages" not in st.session_state.keys(): # Initialize the chat message history
|
15 |
st.session_state.messages = [{"role": "assistant", "content": "Ask me a question about André's research!"}]
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def main():
|
19 |
+
# setup logger sidebar
|
20 |
+
# st.sidebar.text("Standard output log:")
|
21 |
+
# _sidebar_out = st.sidebar.empty()
|
22 |
+
# with rd.stdout(to=_sidebar_out, format='text'):
|
23 |
+
# print("test")
|
24 |
+
|
25 |
# setup dataset
|
26 |
download_test_data()
|
27 |
+
index = load_data()
|
28 |
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
|
29 |
|
30 |
if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
|
chatbot/{utils.py → data.py}
RENAMED
@@ -14,37 +14,46 @@ from llama_index.llms import AzureOpenAI
|
|
14 |
def download_test_data():
|
15 |
# url = f"https://drive.google.com/drive/folders/uc?export=download&confirm=pbef&id={file_id}"
|
16 |
url = "https://drive.google.com/drive/folders/1uDSAWtLvp1YPzfXUsK_v6DeWta16pq6y"
|
17 |
-
with st.spinner(text="Downloading test data.
|
|
|
|
|
18 |
download_folder(url=url, quiet=False, use_cookies=False, output="./data/")
|
19 |
|
20 |
|
21 |
@st.cache_resource(show_spinner=False)
|
22 |
-
def load_data(
|
23 |
with st.spinner(text="Loading and indexing the provided dataset – hang tight! This may take a few seconds."):
|
24 |
documents = SimpleDirectoryReader(input_dir="./data", recursive=True).load_data()
|
|
|
|
|
25 |
llm = AzureOpenAI(
|
26 |
model="gpt-3.5-turbo",
|
27 |
-
engine=
|
28 |
temperature=0.5,
|
29 |
-
api_key=os.
|
30 |
-
api_base=
|
31 |
api_type="azure",
|
32 |
-
api_version=
|
33 |
system_prompt="You are an expert on André's research and your job is to answer"
|
34 |
"technical questions. Assume that all questions are related to"
|
35 |
-
"André's research. Keep your answers technical and based on facts"
|
36 |
-
"
|
37 |
)
|
|
|
|
|
38 |
# You need to deploy your own embedding model as well as your own chat completion model
|
39 |
embed_model = OpenAIEmbedding(
|
40 |
model="text-embedding-ada-002",
|
41 |
-
deployment_name=
|
42 |
-
api_key=os.
|
43 |
-
api_base=
|
44 |
api_type="azure",
|
45 |
-
api_version=
|
|
|
46 |
)
|
47 |
-
|
|
|
|
|
48 |
set_global_service_context(service_context)
|
49 |
index = VectorStoreIndex.from_documents(documents) # , service_context=service_context)
|
50 |
return index
|
|
|
14 |
def download_test_data():
|
15 |
# url = f"https://drive.google.com/drive/folders/uc?export=download&confirm=pbef&id={file_id}"
|
16 |
url = "https://drive.google.com/drive/folders/1uDSAWtLvp1YPzfXUsK_v6DeWta16pq6y"
|
17 |
+
with st.spinner(text="Downloading test data. This might take a minute."):
|
18 |
+
# @TODO: replace gown solution with a custom solution compatible with GitHub and
|
19 |
+
# use st.progress to get more verbose during download
|
20 |
download_folder(url=url, quiet=False, use_cookies=False, output="./data/")
|
21 |
|
22 |
|
23 |
@st.cache_resource(show_spinner=False)
|
24 |
+
def load_data():
|
25 |
with st.spinner(text="Loading and indexing the provided dataset – hang tight! This may take a few seconds."):
|
26 |
documents = SimpleDirectoryReader(input_dir="./data", recursive=True).load_data()
|
27 |
+
|
28 |
+
with st.spinner(text="Setting up Azure OpenAI..."):
|
29 |
llm = AzureOpenAI(
|
30 |
model="gpt-3.5-turbo",
|
31 |
+
engine=st.secrets["ENGINE"],
|
32 |
temperature=0.5,
|
33 |
+
api_key=os.environ["OPENAI_API_KEY"],
|
34 |
+
api_base=st.secrets["OPENAI_API_BASE"],
|
35 |
api_type="azure",
|
36 |
+
api_version=st.secrets["OPENAI_API_VERSION"],
|
37 |
system_prompt="You are an expert on André's research and your job is to answer"
|
38 |
"technical questions. Assume that all questions are related to"
|
39 |
+
"André's research. Keep your answers technical and based on facts;"
|
40 |
+
" do not hallucinate features.",
|
41 |
)
|
42 |
+
|
43 |
+
with st.spinner(text="Setting up OpenAI Embedding..."):
|
44 |
# You need to deploy your own embedding model as well as your own chat completion model
|
45 |
embed_model = OpenAIEmbedding(
|
46 |
model="text-embedding-ada-002",
|
47 |
+
deployment_name=st.secrets["ENGINE_EMBEDDING"],
|
48 |
+
api_key=os.environ["OPENAI_API_KEY"],
|
49 |
+
api_base=st.secrets["OPENAI_API_BASE"],
|
50 |
api_type="azure",
|
51 |
+
api_version=st.secrets["OPENAI_API_VERSION"],
|
52 |
+
embed_batch_size=10, # set to low value to reduce rate limit -> may degrade response runtime
|
53 |
)
|
54 |
+
|
55 |
+
with st.spinner(text="Setting up Vector Store Index..."):
|
56 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) # , chunk_size=512)
|
57 |
set_global_service_context(service_context)
|
58 |
index = VectorStoreIndex.from_documents(documents) # , service_context=service_context)
|
59 |
return index
|
chatbot/redirect.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import io
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
|
9 |
+
class _Redirect:
|
10 |
+
"""
|
11 |
+
Based on: https://gist.github.com/schaumb/037f139035d93cff3ad9f4f7e5f739ce
|
12 |
+
Also see: https://github.com/streamlit/streamlit/issues/268#issuecomment-810478208
|
13 |
+
"""
|
14 |
+
|
15 |
+
class IOStuff(io.StringIO):
|
16 |
+
def __init__(self, trigger, max_buffer, buffer_separator, regex, dup=None):
|
17 |
+
super().__init__()
|
18 |
+
self._trigger = trigger
|
19 |
+
self._max_buffer = max_buffer
|
20 |
+
self._buffer_separator = buffer_separator
|
21 |
+
self._regex = regex and re.compile(regex)
|
22 |
+
self._dup = dup
|
23 |
+
|
24 |
+
def write(self, __s: str) -> int:
|
25 |
+
if self._max_buffer:
|
26 |
+
concatenated_len = super().tell() + len(__s)
|
27 |
+
if concatenated_len > self._max_buffer:
|
28 |
+
rest = self.get_filtered_output()[concatenated_len - self._max_buffer :]
|
29 |
+
if self._buffer_separator is not None:
|
30 |
+
rest = rest.split(self._buffer_separator, 1)[-1]
|
31 |
+
super().seek(0)
|
32 |
+
super().write(rest)
|
33 |
+
super().truncate(super().tell() + len(__s))
|
34 |
+
res = super().write(__s)
|
35 |
+
if self._dup is not None:
|
36 |
+
self._dup.write(__s)
|
37 |
+
self._trigger(self.get_filtered_output())
|
38 |
+
return res
|
39 |
+
|
40 |
+
def get_filtered_output(self):
|
41 |
+
if self._regex is None or self._buffer_separator is None:
|
42 |
+
return self.getvalue()
|
43 |
+
|
44 |
+
return self._buffer_separator.join(
|
45 |
+
filter(self._regex.search, self.getvalue().split(self._buffer_separator))
|
46 |
+
)
|
47 |
+
|
48 |
+
def print_at_end(self):
|
49 |
+
self._trigger(self.get_filtered_output())
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
stdout=None,
|
54 |
+
stderr=False,
|
55 |
+
format=None,
|
56 |
+
to=None,
|
57 |
+
max_buffer=None,
|
58 |
+
buffer_separator="\n",
|
59 |
+
regex=None,
|
60 |
+
duplicate_out=False,
|
61 |
+
):
|
62 |
+
self.io_args = {
|
63 |
+
"trigger": self._write,
|
64 |
+
"max_buffer": max_buffer,
|
65 |
+
"buffer_separator": buffer_separator,
|
66 |
+
"regex": regex,
|
67 |
+
}
|
68 |
+
self.redirections = []
|
69 |
+
self.st = None
|
70 |
+
self.stderr = stderr is True
|
71 |
+
self.stdout = stdout is True or (stdout is None and not self.stderr)
|
72 |
+
self.format = format or "code"
|
73 |
+
self.to = to
|
74 |
+
self.fun = None
|
75 |
+
self.duplicate_out = duplicate_out or None
|
76 |
+
self.active_nested = None
|
77 |
+
|
78 |
+
if not self.stdout and not self.stderr:
|
79 |
+
raise ValueError("one of stdout or stderr must be True")
|
80 |
+
|
81 |
+
if self.format not in ["text", "markdown", "latex", "code", "write"]:
|
82 |
+
raise ValueError(
|
83 |
+
f"format need oneof the following: {', '.join(['text', 'markdown', 'latex', 'code', 'write'])}"
|
84 |
+
)
|
85 |
+
|
86 |
+
if self.to and (not hasattr(self.to, "text") or not hasattr(self.to, "empty")):
|
87 |
+
raise ValueError(f"'to' is not a streamlit container object: {self.to}")
|
88 |
+
|
89 |
+
def __enter__(self):
|
90 |
+
if self.st is not None:
|
91 |
+
if self.to is None:
|
92 |
+
if self.active_nested is None:
|
93 |
+
self.active_nested = self(
|
94 |
+
format=self.format,
|
95 |
+
max_buffer=self.io_args["max_buffer"],
|
96 |
+
buffer_separator=self.io_args["buffer_separator"],
|
97 |
+
regex=self.io_args["regex"],
|
98 |
+
duplicate_out=self.duplicate_out,
|
99 |
+
)
|
100 |
+
return self.active_nested.__enter__()
|
101 |
+
else:
|
102 |
+
raise Exception("Already entered")
|
103 |
+
to = self.to or st
|
104 |
+
|
105 |
+
to.text(
|
106 |
+
f"Redirected output from "
|
107 |
+
f"{'stdout and stderr' if self.stdout and self.stderr else 'stdout' if self.stdout else 'stderr'}"
|
108 |
+
f"{' [' + self.io_args['regex'] + ']' if self.io_args['regex'] else ''}"
|
109 |
+
f":"
|
110 |
+
)
|
111 |
+
self.st = to.empty()
|
112 |
+
self.fun = getattr(self.st, self.format)
|
113 |
+
|
114 |
+
io_obj = None
|
115 |
+
|
116 |
+
def redirect(to_duplicate):
|
117 |
+
nonlocal io_obj
|
118 |
+
io_obj = _Redirect.IOStuff(dup=self.duplicate_out and to_duplicate, **self.io_args)
|
119 |
+
redirection = contextlib.redirect_stdout(io_obj)
|
120 |
+
self.redirections.append((redirection, io_obj))
|
121 |
+
redirection.__enter__()
|
122 |
+
|
123 |
+
if self.stderr:
|
124 |
+
redirect(sys.stderr)
|
125 |
+
if self.stdout:
|
126 |
+
redirect(sys.stdout)
|
127 |
+
|
128 |
+
return io_obj
|
129 |
+
|
130 |
+
def __call__(self, to=None, format=None, max_buffer=None, buffer_separator="\n", regex=None, duplicate_out=False):
|
131 |
+
return _Redirect(
|
132 |
+
self.stdout,
|
133 |
+
self.stderr,
|
134 |
+
format=format,
|
135 |
+
to=to,
|
136 |
+
max_buffer=max_buffer,
|
137 |
+
buffer_separator=buffer_separator,
|
138 |
+
regex=regex,
|
139 |
+
duplicate_out=duplicate_out,
|
140 |
+
)
|
141 |
+
|
142 |
+
def __exit__(self, *exc):
|
143 |
+
if self.active_nested is not None:
|
144 |
+
nested = self.active_nested
|
145 |
+
if nested.active_nested is None:
|
146 |
+
self.active_nested = None
|
147 |
+
return nested.__exit__(*exc)
|
148 |
+
|
149 |
+
res = None
|
150 |
+
for redirection, io_obj in reversed(self.redirections):
|
151 |
+
res = redirection.__exit__(*exc)
|
152 |
+
io_obj.print_at_end()
|
153 |
+
|
154 |
+
self.redirections = []
|
155 |
+
self.st = None
|
156 |
+
self.fun = None
|
157 |
+
return res
|
158 |
+
|
159 |
+
def _write(self, data):
|
160 |
+
self.fun(data)
|
161 |
+
|
162 |
+
|
163 |
+
stdout = _Redirect(max_buffer=1, buffer_separator="\n")
|
164 |
+
stderr = _Redirect(stderr=True)
|
165 |
+
stdouterr = _Redirect(stdout=True, stderr=True)
|