Spaces:
Running
Running
dbouget
commited on
Commit
·
b68937a
1
Parent(s):
6b70d16
Missing utils file[skip ci]
Browse files- .gitignore +5 -0
- AeroPath/utils.py +67 -0
.gitignore
CHANGED
|
@@ -7,3 +7,8 @@ venv/
|
|
| 7 |
*.ini
|
| 8 |
*__pycache__/
|
| 9 |
*.DS_Store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
*.ini
|
| 8 |
*__pycache__/
|
| 9 |
*.DS_Store
|
| 10 |
+
*.json
|
| 11 |
+
*.onnx
|
| 12 |
+
*.xml
|
| 13 |
+
*.txt
|
| 14 |
+
*.obj
|
AeroPath/utils.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import nibabel as nib
|
| 2 |
+
import numpy as np
|
| 3 |
+
from nibabel.processing import resample_to_output
|
| 4 |
+
from skimage.measure import marching_cubes
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def load_ct_to_numpy(data_path):
|
| 8 |
+
if type(data_path) != str:
|
| 9 |
+
data_path = data_path.name
|
| 10 |
+
|
| 11 |
+
image = nib.load(data_path)
|
| 12 |
+
resampled = resample_to_output(image, None, order=0)
|
| 13 |
+
data = resampled.get_fdata()
|
| 14 |
+
|
| 15 |
+
data = np.rot90(data, k=1, axes=(0, 1))
|
| 16 |
+
|
| 17 |
+
data[data < -1024] = -1024
|
| 18 |
+
data[data > 1024] = 1024
|
| 19 |
+
|
| 20 |
+
data = data - np.amin(data)
|
| 21 |
+
data = data / np.amax(data) * 255
|
| 22 |
+
data = data.astype("uint8")
|
| 23 |
+
|
| 24 |
+
print(data.shape)
|
| 25 |
+
return [data[..., i] for i in range(data.shape[-1])]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_pred_volume_to_numpy(data_path):
|
| 29 |
+
if type(data_path) != str:
|
| 30 |
+
data_path = data_path.name
|
| 31 |
+
|
| 32 |
+
image = nib.load(data_path)
|
| 33 |
+
resampled = resample_to_output(image, None, order=0)
|
| 34 |
+
data = resampled.get_fdata()
|
| 35 |
+
|
| 36 |
+
data = np.rot90(data, k=1, axes=(0, 1))
|
| 37 |
+
|
| 38 |
+
data[data > 0] = 1
|
| 39 |
+
data = data.astype("uint8")
|
| 40 |
+
|
| 41 |
+
print(data.shape)
|
| 42 |
+
return [data[..., i] for i in range(data.shape[-1])]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def nifti_to_glb(path, output="prediction.obj"):
|
| 46 |
+
# load NIFTI into numpy array
|
| 47 |
+
image = nib.load(path)
|
| 48 |
+
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
| 49 |
+
data = resampled.get_fdata().astype("uint8")
|
| 50 |
+
|
| 51 |
+
# extract surface
|
| 52 |
+
verts, faces, normals, values = marching_cubes(data, 0)
|
| 53 |
+
faces += 1
|
| 54 |
+
|
| 55 |
+
with open(output, "w") as thefile:
|
| 56 |
+
for item in verts:
|
| 57 |
+
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
| 58 |
+
|
| 59 |
+
for item in normals:
|
| 60 |
+
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
| 61 |
+
|
| 62 |
+
for item in faces:
|
| 63 |
+
thefile.write(
|
| 64 |
+
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
| 65 |
+
item[0], item[1], item[2]
|
| 66 |
+
)
|
| 67 |
+
)
|