andreeabodea commited on
Commit
36123ae
·
verified ·
1 Parent(s): fbd49a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -123
app.py CHANGED
@@ -1,123 +0,0 @@
1
- import os
2
- import pdfplumber
3
- import re
4
- import gradio as gr
5
- from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
6
-
7
- """
8
- Extract the text from a section of a PDF file between 'wanted_section' and 'next_section'.
9
- Parameters:
10
- - path (str): The file path to the PDF file.
11
- - wanted_section (str): The section to start extracting text from.
12
- - next_section (str): The section to stop extracting text at.
13
- Returns:
14
- - text (str): The extracted text from the specified section range.
15
- """
16
-
17
-
18
- def get_section(path, wanted_section, next_section):
19
- print(wanted_section)
20
-
21
- # Open the PDF file
22
- doc = pdfplumber.open(BytesIO(path))
23
- start_page = []
24
- end_page = []
25
-
26
- # Find the all the pages for the specified sections
27
- for page in range(len(doc.pages)):
28
- if len(doc.pages[page].search(wanted_section, return_chars=False, case=False)) > 0:
29
- start_page.append(page)
30
- if len(doc.pages[page].search(next_section, return_chars=False, case=False)) > 0:
31
- end_page.append(page)
32
-
33
- # Extract the text between the start and end page of the wanted section
34
- text = []
35
- for page_num in range(max(start_page), max(end_page)+1):
36
- page = doc.pages[page_num]
37
- text.append(page.extract_text())
38
- text = " ".join(text)
39
- final_text = text.replace("\n", " ")
40
- return final_text
41
-
42
-
43
- def extract_between(big_string, start_string, end_string):
44
- # Use a non-greedy match for content between start_string and end_string
45
- pattern = re.escape(start_string) + '(.*?)' + re.escape(end_string)
46
- match = re.search(pattern, big_string, re.DOTALL)
47
-
48
- if match:
49
- # Return the content without the start and end strings
50
- return match.group(1)
51
- else:
52
- # Return None if the pattern is not found
53
- return None
54
-
55
- def format_section1(section1_text):
56
- result_section1_dict = {}
57
-
58
- result_section1_dict['TOPIC'] = extract_between(section1_text, "Sektor", "EZ-Programm")
59
- result_section1_dict['PROGRAM'] = extract_between(section1_text, "Sektor", "EZ-Programm")
60
- result_section1_dict['PROJECT DESCRIPTION'] = extract_between(section1_text, "EZ-Programmziel", "Datum der letzten BE")
61
- result_section1_dict['PROJECT NAME'] = extract_between(section1_text, "Modul", "Modulziel")
62
- result_section1_dict['OBJECTIVE'] = extract_between(section1_text, "Modulziel", "Berichtszeitraum")
63
- result_section1_dict['PROGRESS'] = extract_between(section1_text, "Zielerreichung des Moduls", "Massnahme im Zeitplan")
64
- result_section1_dict['STATUS'] = extract_between(section1_text, "Massnahme im Zeitplan", "Risikoeinschätzung")
65
- result_section1_dict['RECOMMENDATIONS'] = extract_between(section1_text, "Vorschläge zur Modulanpas-", "Voraussichtliche")
66
-
67
- return result_section1_dict
68
-
69
- def answer_questions(text,language="de"):
70
- # Initialize the zero-shot classification pipeline
71
- model_name = "deepset/gelectra-large-germanquad"
72
- model = AutoModelForQuestionAnswering.from_pretrained(model_name)
73
- tokenizer = AutoTokenizer.from_pretrained(model_name)
74
-
75
- # Initialize the QA pipeline
76
- qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
77
- questions = [
78
- "Welches ist das Titel des Moduls?",
79
- "Welches ist das Sektor oder das Kernthema?",
80
- "Welches ist das Land?",
81
- "Zu welchem Program oder EZ-Programm gehort das Projekt?"
82
- #"Welche Durchführungsorganisation aus den 4 Varianten 'giz', 'kfw', 'ptb' und 'bgr' implementiert das Projekt?"
83
- # "In dem Dokument was steht bei Sektor?",
84
- # "In dem Dokument was steht von 'EZ-Programm' bis 'EZ-Programmziel'?",
85
- # "In dem Dokument was steht bei EZ-Programmziel?",
86
- # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Modul?",
87
- # "In dem Dokument was steht bei Zielerreichung des Moduls?",
88
- # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Maßnahme im Zeitplan?",
89
- # "In dem Dokument was steht bei Vorschläge zur Modulanpassung?",
90
- # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als erstes Datum?",
91
- # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als zweites Datum?"
92
- ]
93
-
94
- # Iterate over each question and get answers
95
- for question in questions:
96
- result = qa_pipeline(question=question, context=text)
97
- # print(f"Question: {question}")
98
- # print(f"Answer: {result['answer']}\n")
99
- answers_dict[question] = result['answer']
100
- return answers_dict
101
-
102
-
103
- def process_pdf(path):
104
- results_dict = {}
105
- results_dict["1. Kurzbeschreibung"] = \
106
- get_section(path, "1. Kurzbeschreibung", "2. Einordnung des Moduls")
107
- answers = answer_questions(results_dict["1. Kurzbeschreibung"])
108
- return result_section1_dict['TOPIC']
109
-
110
- def get_first_page_text(file_data):
111
- doc = pdfplumber.open(BytesIO(file_data))
112
- if len(doc.pages):
113
- return doc.pages[0].extract_text()
114
-
115
- # Define the Gradio interface
116
- # iface = gr.Interface(fn=process_pdf,
117
- iface = gr.Interface(fn=get_first_page_text,
118
- inputs=gr.File(type="binary", label="Upload PDF"),
119
- outputs=gr.Textbox(label="Extracted Text"),
120
- title="PDF Text Extractor",
121
- description="Upload a PDF file to extract.")
122
-
123
- iface.launch()