import gradio as gr from transformers import ( AutoTokenizer, AutoModelForSeq2SeqLM, AutoProcessor, AutoModelForDocumentQuestionAnswering, pipeline, ) import torch import torchaudio processor = AutoProcessor.from_pretrained( "MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2" ) model = AutoModelForDocumentQuestionAnswering.from_pretrained( "MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2" ) tokenizer_ru2en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en") model_ru2en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en") tokenizer_en2ru = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ru") model_en2ru = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ru") transcriber = pipeline( "automatic-speech-recognition", model="artyomboyko/whisper-base-fine_tuned-ru" ) def translate_ru2en(text): inputs = tokenizer_ru2en(text, return_tensors="pt") outputs = model_ru2en.generate(**inputs) translated_text = tokenizer_ru2en.decode(outputs[0], skip_special_tokens=True) return translated_text def translate_en2ru(text): inputs = tokenizer_en2ru(text, return_tensors="pt") outputs = model_en2ru.generate(**inputs) translated_text = tokenizer_en2ru.decode(outputs[0], skip_special_tokens=True) return translated_text def generate_answer_git(image, question): with torch.no_grad(): encoding = processor( images=image, text=question, return_tensors="pt", max_length=512, truncation=True, ) outputs = model(**encoding) start_logits = outputs.start_logits end_logits = outputs.end_logits predicted_start_idx = start_logits.argmax(-1).item() predicted_end_idx = end_logits.argmax(-1).item() return processor.tokenizer.decode( encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1] ) def generate_answer(image, question): question_en = translate_ru2en(question) print(f"Вопрос на английском: {question_en}") answer_en = generate_answer_git(image, question_en) print(f"Ответ на английском: {answer_en}") answer_ru = translate_en2ru(answer_en) return answer_ru def transcribe(image, audio): if not image or not audio: return sr, y = audio if y.ndim > 1: y = y.mean(axis=1) y_tensor = torch.tensor(y, dtype=torch.float32) print(y.shape) if sr != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000) y_tensor = resampler(y_tensor) sr = 16000 y_tensor /= torch.max(torch.abs(y_tensor)) y = y_tensor.numpy() print(y.shape) input_features = transcriber.feature_extractor( y, sampling_rate=sr, return_tensors="pt" ).input_features transcription = transcriber.model.generate(input_features) transcription_text = transcriber.tokenizer.decode( transcription[0], skip_special_tokens=True ) return generate_answer(image, transcription_text) qa_interface = gr.Interface( fn=generate_answer, inputs=[ gr.Image(type="pil"), gr.Textbox(label="Вопрос (на русском)", placeholder="Ваш вопрос"), ], outputs=gr.Textbox(label="Ответ (на русском)"), examples=[["doc.png", "О чем данный документ?"]], live=False, ) speech_interface = gr.Interface( fn=transcribe, inputs=[ gr.Image(type="pil"), gr.Audio(sources="microphone", label="Голосовой ввод"), ], outputs=gr.Textbox(label="Распознанный текст"), live=True, ) interface = gr.TabbedInterface( [qa_interface, speech_interface], ["Текстовый вопрос", "Голосовой вопрос"], title="Демо визуального ответчика на вопросы (на русском)", ) interface.launch(debug=True, share=True)