requirements.txt
Browse filestorch==2.2.0
transformers==4.39.1
datasets==2.18.0
accelerate==0.27.2
peft==0.10.0
bitsandbytes==0.41.0
sentencepiece==0.1.99
gradio==4.20.0
google-colab
pandas
huggingface_hub==0.21.3
app.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled15.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1fx7o1di_oHCoQdFAAh8tqJ9NPQ82-rOH
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
# Mount Google Drive (optional if you want to save files there)
|
13 |
+
from google.colab import drive
|
14 |
+
drive.mount('/content/drive')
|
15 |
+
|
16 |
+
# Define file paths
|
17 |
+
input_csv_path = "/content/drive/MyDrive/judicial_cases.csv" # Ensure you have uploaded this file
|
18 |
+
train_csv_path = "/content/training_judicial_cases.csv"
|
19 |
+
val_csv_path = "/content/validation_judicial_cases.csv"
|
20 |
+
|
21 |
+
# Load the dataset
|
22 |
+
df = pd.read_csv(input_csv_path)
|
23 |
+
|
24 |
+
# Split dataset (80% training, 20% validation)
|
25 |
+
train_df = df.sample(frac=0.8, random_state=42) # Random sampling for training
|
26 |
+
val_df = df.drop(train_df.index) # Remaining 20% for validation
|
27 |
+
|
28 |
+
# Save training and validation sets as CSV
|
29 |
+
train_df.to_csv(train_csv_path, index=False)
|
30 |
+
val_df.to_csv(val_csv_path, index=False)
|
31 |
+
|
32 |
+
print(f"β
Training set saved: {train_csv_path}")
|
33 |
+
print(f"β
Validation set saved: {val_csv_path}")
|
34 |
+
|
35 |
+
# Copy to Google Drive (optional)
|
36 |
+
train_drive_path = "/content/drive/MyDrive/training_judicial_cases.csv"
|
37 |
+
val_drive_path = "/content/drive/MyDrive/validation_judicial_cases.csv"
|
38 |
+
|
39 |
+
!cp {train_csv_path} {train_drive_path}
|
40 |
+
!cp {val_csv_path} {val_drive_path}
|
41 |
+
|
42 |
+
print(f"π Training set also saved to Google Drive: {train_drive_path}")
|
43 |
+
print(f"π Validation set also saved to Google Drive: {val_drive_path}")
|
44 |
+
|
45 |
+
import os
|
46 |
+
|
47 |
+
file_path = "/content/drive/MyDrive/training_data.jsonl"
|
48 |
+
|
49 |
+
if os.path.exists(file_path):
|
50 |
+
print("β
File exists, proceeding with upload...")
|
51 |
+
else:
|
52 |
+
print("β File not found! Check file path.")
|
53 |
+
|
54 |
+
import torch
|
55 |
+
|
56 |
+
if torch.cuda.is_available():
|
57 |
+
print("β
GPU is available:", torch.cuda.get_device_name(0))
|
58 |
+
else:
|
59 |
+
print("β No GPU found! Go to Runtime β Change runtime type β Select GPU.")
|
60 |
+
|
61 |
+
import pandas as pd
|
62 |
+
|
63 |
+
# Load dataset
|
64 |
+
df = pd.read_csv("/content/drive/MyDrive/judicial_cases.csv")
|
65 |
+
|
66 |
+
# Display first few rows
|
67 |
+
print(df.head())
|
68 |
+
|
69 |
+
!pip install datasets
|
70 |
+
|
71 |
+
!pip install torch transformers peft bitsandbytes datasets accelerate sentencepiece
|
72 |
+
|
73 |
+
from huggingface_hub import login
|
74 |
+
|
75 |
+
login(token="") # Paste your HF token here
|
76 |
+
print("β
Hugging Face login successful!")
|
77 |
+
|
78 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
+
|
80 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
81 |
+
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
83 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", use_auth_token=True)
|
84 |
+
|
85 |
+
print("β
LLaMA 2 model loaded successfully!")
|
86 |
+
|
87 |
+
from peft import LoraConfig, get_peft_model
|
88 |
+
from transformers import TrainingArguments
|
89 |
+
|
90 |
+
# Define QLoRA configuration
|
91 |
+
lora_config = LoraConfig(
|
92 |
+
r=16, # Low-rank adaptation size
|
93 |
+
lora_alpha=32, # Scaling factor
|
94 |
+
lora_dropout=0.05, # Dropout to prevent overfitting
|
95 |
+
target_modules=["q_proj", "v_proj"] # Apply LoRA to attention layers
|
96 |
+
)
|
97 |
+
|
98 |
+
# Apply LoRA to the model
|
99 |
+
model = get_peft_model(model, lora_config)
|
100 |
+
model.print_trainable_parameters()
|
101 |
+
|
102 |
+
json_path = "/content/drive/MyDrive/judicial_cases.json"
|
103 |
+
|
104 |
+
from datasets import load_dataset
|
105 |
+
|
106 |
+
dataset = load_dataset("json", data_files={"train": json_path})
|
107 |
+
print("β
Dataset loaded successfully!")
|
108 |
+
|
109 |
+
import os
|
110 |
+
|
111 |
+
json_path = "/content/drive/MyDrive/judicial_cases.json" # Update the path if needed
|
112 |
+
|
113 |
+
if os.path.exists(json_path):
|
114 |
+
print(f"β
JSON file found: {json_path}")
|
115 |
+
else:
|
116 |
+
print(f"β JSON file not found! You need to generate it first.")
|
117 |
+
|
118 |
+
!pip install --upgrade datasets transformers
|
119 |
+
|
120 |
+
import datasets
|
121 |
+
from datasets import load_dataset
|
122 |
+
|
123 |
+
print("β
Hugging Face `datasets` library is installed and working!")
|
124 |
+
|
125 |
+
import datasets
|
126 |
+
from datasets import load_dataset
|
127 |
+
|
128 |
+
print("β
Hugging Face `datasets` library is installed and working!")
|
129 |
+
|
130 |
+
from datasets import load_dataset
|
131 |
+
|
132 |
+
# Load dataset from JSON file
|
133 |
+
dataset = load_dataset("json", data_files={"train": "/content/drive/MyDrive/judicial_cases.json"})
|
134 |
+
|
135 |
+
# Split dataset into training (80%) and evaluation (20%)
|
136 |
+
split_dataset = dataset["train"].train_test_split(test_size=0.2, seed=42)
|
137 |
+
|
138 |
+
train_dataset = split_dataset["train"]
|
139 |
+
eval_dataset = split_dataset["test"] # Required for evaluation
|
140 |
+
|
141 |
+
print("β
Dataset split into training and evaluation sets!")
|
142 |
+
|
143 |
+
from google.colab import drive
|
144 |
+
drive.mount('/content/drive')
|
145 |
+
|
146 |
+
from datasets import load_dataset
|
147 |
+
|
148 |
+
dataset = load_dataset("json", data_files={"train": json_path})
|
149 |
+
|
150 |
+
print("β
Dataset loaded successfully!")
|
151 |
+
|
152 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
153 |
+
|
154 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
155 |
+
|
156 |
+
# Load tokenizer
|
157 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token="")
|
158 |
+
|
159 |
+
# Load model without offloading
|
160 |
+
model = AutoModelForCausalLM.from_pretrained(
|
161 |
+
model_name,
|
162 |
+
torch_dtype="auto",
|
163 |
+
#device_map="auto", # Remove automatic device mapping
|
164 |
+
#offload_folder="offload" # Remove offloading
|
165 |
+
)
|
166 |
+
|
167 |
+
# Manually move the model to the desired device
|
168 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
169 |
+
model.to(device) # Move entire model to GPU if available, else CPU
|
170 |
+
|
171 |
+
print("β
Model loaded successfully!")
|
172 |
+
|
173 |
+
from datasets import load_dataset
|
174 |
+
|
175 |
+
# Load dataset from JSON file
|
176 |
+
dataset = load_dataset("json", data_files={"train": "/content/drive/MyDrive/judicial_cases.json"})
|
177 |
+
|
178 |
+
# Split dataset into training (80%) and evaluation (20%)
|
179 |
+
split_dataset = dataset["train"].train_test_split(test_size=0.2, seed=42)
|
180 |
+
|
181 |
+
train_dataset = split_dataset["train"]
|
182 |
+
eval_dataset = split_dataset["test"] # Required for evaluation
|
183 |
+
|
184 |
+
print("β
Dataset split into training and evaluation sets!")
|
185 |
+
|
186 |
+
from transformers import TrainingArguments
|
187 |
+
|
188 |
+
training_args = TrainingArguments(
|
189 |
+
output_dir="/content/fine_tuned_llama2",
|
190 |
+
per_device_train_batch_size=2,
|
191 |
+
gradient_accumulation_steps=4,
|
192 |
+
warmup_steps=100,
|
193 |
+
max_steps=500,
|
194 |
+
learning_rate=2e-4,
|
195 |
+
fp16=True,
|
196 |
+
logging_steps=10,
|
197 |
+
save_strategy="epoch",
|
198 |
+
eval_strategy="epoch", # Fix deprecation warning
|
199 |
+
push_to_hub=False
|
200 |
+
)
|
201 |
+
|
202 |
+
from transformers import Trainer
|
203 |
+
|
204 |
+
trainer = Trainer(
|
205 |
+
model=model, # Do NOT move manually
|
206 |
+
args=training_args,
|
207 |
+
train_dataset=train_dataset,
|
208 |
+
eval_dataset=eval_dataset # Include evaluation dataset if available
|
209 |
+
)
|
210 |
+
|
211 |
+
print("β
Trainer initialized successfully!")
|
212 |
+
|
213 |
+
model.save_pretrained("/content/fine_tuned_llama2")
|
214 |
+
tokenizer.save_pretrained("/content/fine_tuned_llama2")
|
215 |
+
|
216 |
+
print("β
Model saved successfully!")
|
217 |
+
|
218 |
+
# Optional: Upload to Hugging Face
|
219 |
+
from huggingface_hub import notebook_login
|
220 |
+
notebook_login()
|
221 |
+
|
222 |
+
# Replace "your-hf-username" with your actual Hugging Face username
|
223 |
+
model.push_to_hub("and89/fine_tuned_llama2")
|
224 |
+
tokenizer.push_to_hub("and89/fine_tuned_llama2")
|
225 |
+
print("π Model uploaded to Hugging Face!")
|
226 |
+
|
227 |
+
from huggingface_hub import HfApi
|
228 |
+
|
229 |
+
api = HfApi()
|
230 |
+
datasets = api.list_repo_files("and89/fine_tuned_llama2")
|
231 |
+
|
232 |
+
print("β
Uploaded dataset files:", datasets)
|
233 |
+
|
234 |
+
api.upload_file(
|
235 |
+
path_or_fileobj="/content/drive/MyDrive/training_data.jsonl", # Update file path
|
236 |
+
path_in_repo="training_data.jsonl",
|
237 |
+
repo_id="and89/fine_tuned_llama2"
|
238 |
+
)
|
239 |
+
|
240 |
+
from transformers import Trainer
|
241 |
+
|
242 |
+
# Tokenize the dataset
|
243 |
+
def tokenize_function(examples):
|
244 |
+
return tokenizer(examples["facts"], padding="max_length", truncation=True)
|
245 |
+
|
246 |
+
# Assuming "facts" is the column you want to use for input
|
247 |
+
|
248 |
+
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
249 |
+
eval_dataset = eval_dataset.map(tokenize_function, batched=True)
|
250 |
+
|
251 |
+
# Now initialize the Trainer
|
252 |
+
trainer = Trainer(
|
253 |
+
model=model, # Do NOT move manually
|
254 |
+
args=training_args,
|
255 |
+
train_dataset=train_dataset,
|
256 |
+
eval_dataset=eval_dataset # Include evaluation dataset if available
|
257 |
+
)
|
258 |
+
|
259 |
+
print("β
Trainer initialized successfully!")
|
260 |
+
|
261 |
+
from datasets import load_dataset
|
262 |
+
|
263 |
+
# Replace with your dataset name
|
264 |
+
dataset = load_dataset("and89/fine_tuned_llama2")
|
265 |
+
|
266 |
+
# Check dataset format
|
267 |
+
print(dataset)
|
268 |
+
|
269 |
+
print(dataset["train"][0]) # Print first row to check structure
|
270 |
+
|
271 |
+
print(dataset) # Prints dataset details
|
272 |
+
print("Sample row:", dataset["train"][0]) # Prints the first row
|
273 |
+
|
274 |
+
from datasets import load_dataset
|
275 |
+
|
276 |
+
dataset = load_dataset("and89/fine_tuned_llama2")
|
277 |
+
print("β
Dataset loaded successfully!")
|
278 |
+
print(dataset)
|
279 |
+
|
280 |
+
from transformers import AutoTokenizer
|
281 |
+
|
282 |
+
model_name = "bert-base-uncased"
|
283 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
284 |
+
|
285 |
+
print(dataset["train"].features)
|
286 |
+
|
287 |
+
def preprocess_function(examples):
|
288 |
+
text_column = list(dataset["train"].features.keys())[0] # Get the text column name
|
289 |
+
|
290 |
+
# Ensure the input is a list of strings
|
291 |
+
texts = examples[text_column]
|
292 |
+
|
293 |
+
# Convert all values to strings in case they are not
|
294 |
+
texts = [str(text) for text in texts]
|
295 |
+
|
296 |
+
return tokenizer(texts, padding="max_length", truncation=True)
|
297 |
+
|
298 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
299 |
+
|
300 |
+
print("β
Tokenization successful!")
|
301 |
+
|
302 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True, desc="Tokenizing dataset")
|
303 |
+
|
304 |
+
print("β
Tokenization successful!")
|
305 |
+
print(tokenized_datasets)
|
306 |
+
|
307 |
+
tokenized_datasets.save_to_disk("tokenized_dataset")
|
308 |
+
|
309 |
+
# Reload and verify
|
310 |
+
from datasets import load_from_disk
|
311 |
+
reloaded_dataset = load_from_disk("tokenized_dataset")
|
312 |
+
|
313 |
+
print("β
Reloaded Tokenized Dataset:", reloaded_dataset)
|
314 |
+
|
315 |
+
print(tokenized_datasets) # Prints available dataset splits
|
316 |
+
|
317 |
+
from datasets import load_dataset
|
318 |
+
|
319 |
+
# Load dataset
|
320 |
+
dataset = load_dataset("and89/fine_tuned_llama2")
|
321 |
+
|
322 |
+
# Split dataset (90% train, 10% test)
|
323 |
+
train_test_split = dataset["train"].train_test_split(test_size=0.1)
|
324 |
+
|
325 |
+
# Verify new splits
|
326 |
+
print(train_test_split)
|
327 |
+
|
328 |
+
from datasets import DatasetDict
|
329 |
+
|
330 |
+
# Split dataset into train and test (90% train, 10% test)
|
331 |
+
train_test_split = tokenized_datasets["train"].train_test_split(test_size=0.1)
|
332 |
+
|
333 |
+
# Convert to DatasetDict
|
334 |
+
tokenized_datasets = DatasetDict({
|
335 |
+
"train": train_test_split["train"],
|
336 |
+
"test": train_test_split["test"]
|
337 |
+
})
|
338 |
+
|
339 |
+
print("β
Train-Test split created:", tokenized_datasets)
|
340 |
+
|
341 |
+
print(tokenized_datasets["train"][0])
|
342 |
+
|
343 |
+
training_args = TrainingArguments(
|
344 |
+
output_dir="./results",
|
345 |
+
evaluation_strategy="epoch",
|
346 |
+
save_strategy="epoch",
|
347 |
+
per_device_train_batch_size=8,
|
348 |
+
per_device_eval_batch_size=8,
|
349 |
+
num_train_epochs=3,
|
350 |
+
weight_decay=0.01,
|
351 |
+
push_to_hub=True,
|
352 |
+
hub_model_id="your_username/your_model_name",
|
353 |
+
remove_unused_columns=False # Ensure input columns are kept
|
354 |
+
)
|
355 |
+
|
356 |
+
from huggingface_hub import notebook_login
|
357 |
+
|
358 |
+
# Authenticate with Hugging Face
|
359 |
+
notebook_login()
|
360 |
+
|
361 |
+
# Push model and tokenizer
|
362 |
+
model.push_to_hub("and89/fine_tuned_llama2")
|
363 |
+
tokenizer.push_to_hub("and89/fine_tuned_llama2")
|
364 |
+
|
365 |
+
from transformers import pipeline
|
366 |
+
|
367 |
+
# Load model from Hugging Face
|
368 |
+
classifier = pipeline("text-classification", model="and89/fine_tuned_llama2")
|
369 |
+
|
370 |
+
# Run inference
|
371 |
+
result = classifier("Your input text here")
|
372 |
+
print(result)
|
373 |
+
|
374 |
+
!pip install gradio
|
375 |
+
|
376 |
+
import gradio as gr
|
377 |
+
|
378 |
+
def predict(text):
|
379 |
+
return classifier(text)
|
380 |
+
|
381 |
+
demo = gr.Interface(fn=predict, inputs="text", outputs="text")
|
382 |
+
demo.launch()
|
383 |
+
|
384 |
+
from transformers import pipeline
|
385 |
+
|
386 |
+
# Load the fine-tuned model
|
387 |
+
model_name = "and89/fine_tuned_llama2" # Replace with your actual model name
|
388 |
+
classifier = pipeline("text-classification", model=model_name, tokenizer=model_name)
|
389 |
+
|
390 |
+
def predict(text):
|
391 |
+
return classifier(text)[0]["label"] # Extracts the predicted label
|
392 |
+
|
393 |
+
# Test the function
|
394 |
+
print("β
Model loaded successfully!")
|
395 |
+
print(predict("Help me to analyze this case: employee filed complaint against supervisor terminated fine imposed"))
|
396 |
+
|
397 |
+
from huggingface_hub import login
|
398 |
+
login() # This will automatically use the HF_TOKEN secret
|
399 |
+
|
400 |
+
from google.colab import runtime
|
401 |
+
runtime.unassign()
|
402 |
+
|
403 |
+
import gradio as gr
|
404 |
+
from transformers import pipeline
|
405 |
+
|
406 |
+
# Load the fine-tuned model
|
407 |
+
model_name = "and89/fine_tuned_llama2" # Replace with your actual model name
|
408 |
+
classifier = pipeline("text-classification", model=model_name, tokenizer=model_name)
|
409 |
+
|
410 |
+
# Define label mapping (adjust based on your dataset)
|
411 |
+
label_mapping = {
|
412 |
+
"LABEL_0": "Not Guilty",
|
413 |
+
"LABEL_1": "Guilty"
|
414 |
+
}
|
415 |
+
|
416 |
+
def predict(text):
|
417 |
+
result = classifier(text)[0] # Extract the first result
|
418 |
+
label = result["label"] # Get the predicted label (e.g., "LABEL_1")
|
419 |
+
score = result["score"] # Confidence score
|
420 |
+
|
421 |
+
# Map label to meaningful text
|
422 |
+
label_text = label_mapping.get(label, "Unknown")
|
423 |
+
|
424 |
+
return f"Prediction: {label_text} (Confidence: {score:.2f})"
|
425 |
+
|
426 |
+
# Gradio UI
|
427 |
+
demo = gr.Interface(
|
428 |
+
fn=predict,
|
429 |
+
inputs="text",
|
430 |
+
outputs="text",
|
431 |
+
title="Legal Case Decision Predictor",
|
432 |
+
description="Enter a legal case scenario, and the model will predict whether the decision is 'Guilty' or 'Not Guilty'."
|
433 |
+
)
|
434 |
+
|
435 |
+
# Launch the Gradio app
|
436 |
+
demo.launch()
|