requirements.txt
Browse filestorch==2.2.0
transformers==4.39.1
datasets==2.18.0
accelerate==0.27.2
peft==0.10.0
bitsandbytes==0.41.0
sentencepiece==0.1.99
gradio==4.20.0
google-colab
pandas
huggingface_hub==0.21.3
app.py
ADDED
|
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Untitled15.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1fx7o1di_oHCoQdFAAh8tqJ9NPQ82-rOH
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
|
| 12 |
+
# Mount Google Drive (optional if you want to save files there)
|
| 13 |
+
from google.colab import drive
|
| 14 |
+
drive.mount('/content/drive')
|
| 15 |
+
|
| 16 |
+
# Define file paths
|
| 17 |
+
input_csv_path = "/content/drive/MyDrive/judicial_cases.csv" # Ensure you have uploaded this file
|
| 18 |
+
train_csv_path = "/content/training_judicial_cases.csv"
|
| 19 |
+
val_csv_path = "/content/validation_judicial_cases.csv"
|
| 20 |
+
|
| 21 |
+
# Load the dataset
|
| 22 |
+
df = pd.read_csv(input_csv_path)
|
| 23 |
+
|
| 24 |
+
# Split dataset (80% training, 20% validation)
|
| 25 |
+
train_df = df.sample(frac=0.8, random_state=42) # Random sampling for training
|
| 26 |
+
val_df = df.drop(train_df.index) # Remaining 20% for validation
|
| 27 |
+
|
| 28 |
+
# Save training and validation sets as CSV
|
| 29 |
+
train_df.to_csv(train_csv_path, index=False)
|
| 30 |
+
val_df.to_csv(val_csv_path, index=False)
|
| 31 |
+
|
| 32 |
+
print(f"β
Training set saved: {train_csv_path}")
|
| 33 |
+
print(f"β
Validation set saved: {val_csv_path}")
|
| 34 |
+
|
| 35 |
+
# Copy to Google Drive (optional)
|
| 36 |
+
train_drive_path = "/content/drive/MyDrive/training_judicial_cases.csv"
|
| 37 |
+
val_drive_path = "/content/drive/MyDrive/validation_judicial_cases.csv"
|
| 38 |
+
|
| 39 |
+
!cp {train_csv_path} {train_drive_path}
|
| 40 |
+
!cp {val_csv_path} {val_drive_path}
|
| 41 |
+
|
| 42 |
+
print(f"π Training set also saved to Google Drive: {train_drive_path}")
|
| 43 |
+
print(f"π Validation set also saved to Google Drive: {val_drive_path}")
|
| 44 |
+
|
| 45 |
+
import os
|
| 46 |
+
|
| 47 |
+
file_path = "/content/drive/MyDrive/training_data.jsonl"
|
| 48 |
+
|
| 49 |
+
if os.path.exists(file_path):
|
| 50 |
+
print("β
File exists, proceeding with upload...")
|
| 51 |
+
else:
|
| 52 |
+
print("β File not found! Check file path.")
|
| 53 |
+
|
| 54 |
+
import torch
|
| 55 |
+
|
| 56 |
+
if torch.cuda.is_available():
|
| 57 |
+
print("β
GPU is available:", torch.cuda.get_device_name(0))
|
| 58 |
+
else:
|
| 59 |
+
print("β No GPU found! Go to Runtime β Change runtime type β Select GPU.")
|
| 60 |
+
|
| 61 |
+
import pandas as pd
|
| 62 |
+
|
| 63 |
+
# Load dataset
|
| 64 |
+
df = pd.read_csv("/content/drive/MyDrive/judicial_cases.csv")
|
| 65 |
+
|
| 66 |
+
# Display first few rows
|
| 67 |
+
print(df.head())
|
| 68 |
+
|
| 69 |
+
!pip install datasets
|
| 70 |
+
|
| 71 |
+
!pip install torch transformers peft bitsandbytes datasets accelerate sentencepiece
|
| 72 |
+
|
| 73 |
+
from huggingface_hub import login
|
| 74 |
+
|
| 75 |
+
login(token="") # Paste your HF token here
|
| 76 |
+
print("β
Hugging Face login successful!")
|
| 77 |
+
|
| 78 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 79 |
+
|
| 80 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
| 81 |
+
|
| 82 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
| 83 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", use_auth_token=True)
|
| 84 |
+
|
| 85 |
+
print("β
LLaMA 2 model loaded successfully!")
|
| 86 |
+
|
| 87 |
+
from peft import LoraConfig, get_peft_model
|
| 88 |
+
from transformers import TrainingArguments
|
| 89 |
+
|
| 90 |
+
# Define QLoRA configuration
|
| 91 |
+
lora_config = LoraConfig(
|
| 92 |
+
r=16, # Low-rank adaptation size
|
| 93 |
+
lora_alpha=32, # Scaling factor
|
| 94 |
+
lora_dropout=0.05, # Dropout to prevent overfitting
|
| 95 |
+
target_modules=["q_proj", "v_proj"] # Apply LoRA to attention layers
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Apply LoRA to the model
|
| 99 |
+
model = get_peft_model(model, lora_config)
|
| 100 |
+
model.print_trainable_parameters()
|
| 101 |
+
|
| 102 |
+
json_path = "/content/drive/MyDrive/judicial_cases.json"
|
| 103 |
+
|
| 104 |
+
from datasets import load_dataset
|
| 105 |
+
|
| 106 |
+
dataset = load_dataset("json", data_files={"train": json_path})
|
| 107 |
+
print("β
Dataset loaded successfully!")
|
| 108 |
+
|
| 109 |
+
import os
|
| 110 |
+
|
| 111 |
+
json_path = "/content/drive/MyDrive/judicial_cases.json" # Update the path if needed
|
| 112 |
+
|
| 113 |
+
if os.path.exists(json_path):
|
| 114 |
+
print(f"β
JSON file found: {json_path}")
|
| 115 |
+
else:
|
| 116 |
+
print(f"β JSON file not found! You need to generate it first.")
|
| 117 |
+
|
| 118 |
+
!pip install --upgrade datasets transformers
|
| 119 |
+
|
| 120 |
+
import datasets
|
| 121 |
+
from datasets import load_dataset
|
| 122 |
+
|
| 123 |
+
print("β
Hugging Face `datasets` library is installed and working!")
|
| 124 |
+
|
| 125 |
+
import datasets
|
| 126 |
+
from datasets import load_dataset
|
| 127 |
+
|
| 128 |
+
print("β
Hugging Face `datasets` library is installed and working!")
|
| 129 |
+
|
| 130 |
+
from datasets import load_dataset
|
| 131 |
+
|
| 132 |
+
# Load dataset from JSON file
|
| 133 |
+
dataset = load_dataset("json", data_files={"train": "/content/drive/MyDrive/judicial_cases.json"})
|
| 134 |
+
|
| 135 |
+
# Split dataset into training (80%) and evaluation (20%)
|
| 136 |
+
split_dataset = dataset["train"].train_test_split(test_size=0.2, seed=42)
|
| 137 |
+
|
| 138 |
+
train_dataset = split_dataset["train"]
|
| 139 |
+
eval_dataset = split_dataset["test"] # Required for evaluation
|
| 140 |
+
|
| 141 |
+
print("β
Dataset split into training and evaluation sets!")
|
| 142 |
+
|
| 143 |
+
from google.colab import drive
|
| 144 |
+
drive.mount('/content/drive')
|
| 145 |
+
|
| 146 |
+
from datasets import load_dataset
|
| 147 |
+
|
| 148 |
+
dataset = load_dataset("json", data_files={"train": json_path})
|
| 149 |
+
|
| 150 |
+
print("β
Dataset loaded successfully!")
|
| 151 |
+
|
| 152 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 153 |
+
|
| 154 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
| 155 |
+
|
| 156 |
+
# Load tokenizer
|
| 157 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token="")
|
| 158 |
+
|
| 159 |
+
# Load model without offloading
|
| 160 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 161 |
+
model_name,
|
| 162 |
+
torch_dtype="auto",
|
| 163 |
+
#device_map="auto", # Remove automatic device mapping
|
| 164 |
+
#offload_folder="offload" # Remove offloading
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Manually move the model to the desired device
|
| 168 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 169 |
+
model.to(device) # Move entire model to GPU if available, else CPU
|
| 170 |
+
|
| 171 |
+
print("β
Model loaded successfully!")
|
| 172 |
+
|
| 173 |
+
from datasets import load_dataset
|
| 174 |
+
|
| 175 |
+
# Load dataset from JSON file
|
| 176 |
+
dataset = load_dataset("json", data_files={"train": "/content/drive/MyDrive/judicial_cases.json"})
|
| 177 |
+
|
| 178 |
+
# Split dataset into training (80%) and evaluation (20%)
|
| 179 |
+
split_dataset = dataset["train"].train_test_split(test_size=0.2, seed=42)
|
| 180 |
+
|
| 181 |
+
train_dataset = split_dataset["train"]
|
| 182 |
+
eval_dataset = split_dataset["test"] # Required for evaluation
|
| 183 |
+
|
| 184 |
+
print("β
Dataset split into training and evaluation sets!")
|
| 185 |
+
|
| 186 |
+
from transformers import TrainingArguments
|
| 187 |
+
|
| 188 |
+
training_args = TrainingArguments(
|
| 189 |
+
output_dir="/content/fine_tuned_llama2",
|
| 190 |
+
per_device_train_batch_size=2,
|
| 191 |
+
gradient_accumulation_steps=4,
|
| 192 |
+
warmup_steps=100,
|
| 193 |
+
max_steps=500,
|
| 194 |
+
learning_rate=2e-4,
|
| 195 |
+
fp16=True,
|
| 196 |
+
logging_steps=10,
|
| 197 |
+
save_strategy="epoch",
|
| 198 |
+
eval_strategy="epoch", # Fix deprecation warning
|
| 199 |
+
push_to_hub=False
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
from transformers import Trainer
|
| 203 |
+
|
| 204 |
+
trainer = Trainer(
|
| 205 |
+
model=model, # Do NOT move manually
|
| 206 |
+
args=training_args,
|
| 207 |
+
train_dataset=train_dataset,
|
| 208 |
+
eval_dataset=eval_dataset # Include evaluation dataset if available
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
print("β
Trainer initialized successfully!")
|
| 212 |
+
|
| 213 |
+
model.save_pretrained("/content/fine_tuned_llama2")
|
| 214 |
+
tokenizer.save_pretrained("/content/fine_tuned_llama2")
|
| 215 |
+
|
| 216 |
+
print("β
Model saved successfully!")
|
| 217 |
+
|
| 218 |
+
# Optional: Upload to Hugging Face
|
| 219 |
+
from huggingface_hub import notebook_login
|
| 220 |
+
notebook_login()
|
| 221 |
+
|
| 222 |
+
# Replace "your-hf-username" with your actual Hugging Face username
|
| 223 |
+
model.push_to_hub("and89/fine_tuned_llama2")
|
| 224 |
+
tokenizer.push_to_hub("and89/fine_tuned_llama2")
|
| 225 |
+
print("π Model uploaded to Hugging Face!")
|
| 226 |
+
|
| 227 |
+
from huggingface_hub import HfApi
|
| 228 |
+
|
| 229 |
+
api = HfApi()
|
| 230 |
+
datasets = api.list_repo_files("and89/fine_tuned_llama2")
|
| 231 |
+
|
| 232 |
+
print("β
Uploaded dataset files:", datasets)
|
| 233 |
+
|
| 234 |
+
api.upload_file(
|
| 235 |
+
path_or_fileobj="/content/drive/MyDrive/training_data.jsonl", # Update file path
|
| 236 |
+
path_in_repo="training_data.jsonl",
|
| 237 |
+
repo_id="and89/fine_tuned_llama2"
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
from transformers import Trainer
|
| 241 |
+
|
| 242 |
+
# Tokenize the dataset
|
| 243 |
+
def tokenize_function(examples):
|
| 244 |
+
return tokenizer(examples["facts"], padding="max_length", truncation=True)
|
| 245 |
+
|
| 246 |
+
# Assuming "facts" is the column you want to use for input
|
| 247 |
+
|
| 248 |
+
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
| 249 |
+
eval_dataset = eval_dataset.map(tokenize_function, batched=True)
|
| 250 |
+
|
| 251 |
+
# Now initialize the Trainer
|
| 252 |
+
trainer = Trainer(
|
| 253 |
+
model=model, # Do NOT move manually
|
| 254 |
+
args=training_args,
|
| 255 |
+
train_dataset=train_dataset,
|
| 256 |
+
eval_dataset=eval_dataset # Include evaluation dataset if available
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
print("β
Trainer initialized successfully!")
|
| 260 |
+
|
| 261 |
+
from datasets import load_dataset
|
| 262 |
+
|
| 263 |
+
# Replace with your dataset name
|
| 264 |
+
dataset = load_dataset("and89/fine_tuned_llama2")
|
| 265 |
+
|
| 266 |
+
# Check dataset format
|
| 267 |
+
print(dataset)
|
| 268 |
+
|
| 269 |
+
print(dataset["train"][0]) # Print first row to check structure
|
| 270 |
+
|
| 271 |
+
print(dataset) # Prints dataset details
|
| 272 |
+
print("Sample row:", dataset["train"][0]) # Prints the first row
|
| 273 |
+
|
| 274 |
+
from datasets import load_dataset
|
| 275 |
+
|
| 276 |
+
dataset = load_dataset("and89/fine_tuned_llama2")
|
| 277 |
+
print("β
Dataset loaded successfully!")
|
| 278 |
+
print(dataset)
|
| 279 |
+
|
| 280 |
+
from transformers import AutoTokenizer
|
| 281 |
+
|
| 282 |
+
model_name = "bert-base-uncased"
|
| 283 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 284 |
+
|
| 285 |
+
print(dataset["train"].features)
|
| 286 |
+
|
| 287 |
+
def preprocess_function(examples):
|
| 288 |
+
text_column = list(dataset["train"].features.keys())[0] # Get the text column name
|
| 289 |
+
|
| 290 |
+
# Ensure the input is a list of strings
|
| 291 |
+
texts = examples[text_column]
|
| 292 |
+
|
| 293 |
+
# Convert all values to strings in case they are not
|
| 294 |
+
texts = [str(text) for text in texts]
|
| 295 |
+
|
| 296 |
+
return tokenizer(texts, padding="max_length", truncation=True)
|
| 297 |
+
|
| 298 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
| 299 |
+
|
| 300 |
+
print("β
Tokenization successful!")
|
| 301 |
+
|
| 302 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True, desc="Tokenizing dataset")
|
| 303 |
+
|
| 304 |
+
print("β
Tokenization successful!")
|
| 305 |
+
print(tokenized_datasets)
|
| 306 |
+
|
| 307 |
+
tokenized_datasets.save_to_disk("tokenized_dataset")
|
| 308 |
+
|
| 309 |
+
# Reload and verify
|
| 310 |
+
from datasets import load_from_disk
|
| 311 |
+
reloaded_dataset = load_from_disk("tokenized_dataset")
|
| 312 |
+
|
| 313 |
+
print("β
Reloaded Tokenized Dataset:", reloaded_dataset)
|
| 314 |
+
|
| 315 |
+
print(tokenized_datasets) # Prints available dataset splits
|
| 316 |
+
|
| 317 |
+
from datasets import load_dataset
|
| 318 |
+
|
| 319 |
+
# Load dataset
|
| 320 |
+
dataset = load_dataset("and89/fine_tuned_llama2")
|
| 321 |
+
|
| 322 |
+
# Split dataset (90% train, 10% test)
|
| 323 |
+
train_test_split = dataset["train"].train_test_split(test_size=0.1)
|
| 324 |
+
|
| 325 |
+
# Verify new splits
|
| 326 |
+
print(train_test_split)
|
| 327 |
+
|
| 328 |
+
from datasets import DatasetDict
|
| 329 |
+
|
| 330 |
+
# Split dataset into train and test (90% train, 10% test)
|
| 331 |
+
train_test_split = tokenized_datasets["train"].train_test_split(test_size=0.1)
|
| 332 |
+
|
| 333 |
+
# Convert to DatasetDict
|
| 334 |
+
tokenized_datasets = DatasetDict({
|
| 335 |
+
"train": train_test_split["train"],
|
| 336 |
+
"test": train_test_split["test"]
|
| 337 |
+
})
|
| 338 |
+
|
| 339 |
+
print("β
Train-Test split created:", tokenized_datasets)
|
| 340 |
+
|
| 341 |
+
print(tokenized_datasets["train"][0])
|
| 342 |
+
|
| 343 |
+
training_args = TrainingArguments(
|
| 344 |
+
output_dir="./results",
|
| 345 |
+
evaluation_strategy="epoch",
|
| 346 |
+
save_strategy="epoch",
|
| 347 |
+
per_device_train_batch_size=8,
|
| 348 |
+
per_device_eval_batch_size=8,
|
| 349 |
+
num_train_epochs=3,
|
| 350 |
+
weight_decay=0.01,
|
| 351 |
+
push_to_hub=True,
|
| 352 |
+
hub_model_id="your_username/your_model_name",
|
| 353 |
+
remove_unused_columns=False # Ensure input columns are kept
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
from huggingface_hub import notebook_login
|
| 357 |
+
|
| 358 |
+
# Authenticate with Hugging Face
|
| 359 |
+
notebook_login()
|
| 360 |
+
|
| 361 |
+
# Push model and tokenizer
|
| 362 |
+
model.push_to_hub("and89/fine_tuned_llama2")
|
| 363 |
+
tokenizer.push_to_hub("and89/fine_tuned_llama2")
|
| 364 |
+
|
| 365 |
+
from transformers import pipeline
|
| 366 |
+
|
| 367 |
+
# Load model from Hugging Face
|
| 368 |
+
classifier = pipeline("text-classification", model="and89/fine_tuned_llama2")
|
| 369 |
+
|
| 370 |
+
# Run inference
|
| 371 |
+
result = classifier("Your input text here")
|
| 372 |
+
print(result)
|
| 373 |
+
|
| 374 |
+
!pip install gradio
|
| 375 |
+
|
| 376 |
+
import gradio as gr
|
| 377 |
+
|
| 378 |
+
def predict(text):
|
| 379 |
+
return classifier(text)
|
| 380 |
+
|
| 381 |
+
demo = gr.Interface(fn=predict, inputs="text", outputs="text")
|
| 382 |
+
demo.launch()
|
| 383 |
+
|
| 384 |
+
from transformers import pipeline
|
| 385 |
+
|
| 386 |
+
# Load the fine-tuned model
|
| 387 |
+
model_name = "and89/fine_tuned_llama2" # Replace with your actual model name
|
| 388 |
+
classifier = pipeline("text-classification", model=model_name, tokenizer=model_name)
|
| 389 |
+
|
| 390 |
+
def predict(text):
|
| 391 |
+
return classifier(text)[0]["label"] # Extracts the predicted label
|
| 392 |
+
|
| 393 |
+
# Test the function
|
| 394 |
+
print("β
Model loaded successfully!")
|
| 395 |
+
print(predict("Help me to analyze this case: employee filed complaint against supervisor terminated fine imposed"))
|
| 396 |
+
|
| 397 |
+
from huggingface_hub import login
|
| 398 |
+
login() # This will automatically use the HF_TOKEN secret
|
| 399 |
+
|
| 400 |
+
from google.colab import runtime
|
| 401 |
+
runtime.unassign()
|
| 402 |
+
|
| 403 |
+
import gradio as gr
|
| 404 |
+
from transformers import pipeline
|
| 405 |
+
|
| 406 |
+
# Load the fine-tuned model
|
| 407 |
+
model_name = "and89/fine_tuned_llama2" # Replace with your actual model name
|
| 408 |
+
classifier = pipeline("text-classification", model=model_name, tokenizer=model_name)
|
| 409 |
+
|
| 410 |
+
# Define label mapping (adjust based on your dataset)
|
| 411 |
+
label_mapping = {
|
| 412 |
+
"LABEL_0": "Not Guilty",
|
| 413 |
+
"LABEL_1": "Guilty"
|
| 414 |
+
}
|
| 415 |
+
|
| 416 |
+
def predict(text):
|
| 417 |
+
result = classifier(text)[0] # Extract the first result
|
| 418 |
+
label = result["label"] # Get the predicted label (e.g., "LABEL_1")
|
| 419 |
+
score = result["score"] # Confidence score
|
| 420 |
+
|
| 421 |
+
# Map label to meaningful text
|
| 422 |
+
label_text = label_mapping.get(label, "Unknown")
|
| 423 |
+
|
| 424 |
+
return f"Prediction: {label_text} (Confidence: {score:.2f})"
|
| 425 |
+
|
| 426 |
+
# Gradio UI
|
| 427 |
+
demo = gr.Interface(
|
| 428 |
+
fn=predict,
|
| 429 |
+
inputs="text",
|
| 430 |
+
outputs="text",
|
| 431 |
+
title="Legal Case Decision Predictor",
|
| 432 |
+
description="Enter a legal case scenario, and the model will predict whether the decision is 'Guilty' or 'Not Guilty'."
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
# Launch the Gradio app
|
| 436 |
+
demo.launch()
|