Spaces:
Running
Running
import hashlib | |
import json | |
import logging | |
import os | |
import uuid | |
from functools import lru_cache | |
from pathlib import Path | |
from pydub import AudioSegment | |
from pydub.silence import split_on_silence | |
import aiohttp | |
import aiofiles | |
import requests | |
from open_webui.config import ( | |
AUDIO_STT_ENGINE, | |
AUDIO_STT_MODEL, | |
AUDIO_STT_OPENAI_API_BASE_URL, | |
AUDIO_STT_OPENAI_API_KEY, | |
AUDIO_TTS_API_KEY, | |
AUDIO_TTS_ENGINE, | |
AUDIO_TTS_MODEL, | |
AUDIO_TTS_OPENAI_API_BASE_URL, | |
AUDIO_TTS_OPENAI_API_KEY, | |
AUDIO_TTS_SPLIT_ON, | |
AUDIO_TTS_VOICE, | |
AUDIO_TTS_AZURE_SPEECH_REGION, | |
AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT, | |
CACHE_DIR, | |
CORS_ALLOW_ORIGIN, | |
WHISPER_MODEL, | |
WHISPER_MODEL_AUTO_UPDATE, | |
WHISPER_MODEL_DIR, | |
AppConfig, | |
) | |
from open_webui.constants import ERROR_MESSAGES | |
from open_webui.env import ( | |
ENV, | |
SRC_LOG_LEVELS, | |
DEVICE_TYPE, | |
ENABLE_FORWARD_USER_INFO_HEADERS, | |
) | |
from fastapi import Depends, FastAPI, File, HTTPException, Request, UploadFile, status | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import FileResponse | |
from pydantic import BaseModel | |
from open_webui.utils.utils import get_admin_user, get_verified_user | |
# Constants | |
MAX_FILE_SIZE_MB = 25 | |
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["AUDIO"]) | |
app = FastAPI( | |
docs_url="/docs" if ENV == "dev" else None, | |
openapi_url="/openapi.json" if ENV == "dev" else None, | |
redoc_url=None, | |
) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=CORS_ALLOW_ORIGIN, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
app.state.config = AppConfig() | |
app.state.config.STT_OPENAI_API_BASE_URL = AUDIO_STT_OPENAI_API_BASE_URL | |
app.state.config.STT_OPENAI_API_KEY = AUDIO_STT_OPENAI_API_KEY | |
app.state.config.STT_ENGINE = AUDIO_STT_ENGINE | |
app.state.config.STT_MODEL = AUDIO_STT_MODEL | |
app.state.config.WHISPER_MODEL = WHISPER_MODEL | |
app.state.faster_whisper_model = None | |
app.state.config.TTS_OPENAI_API_BASE_URL = AUDIO_TTS_OPENAI_API_BASE_URL | |
app.state.config.TTS_OPENAI_API_KEY = AUDIO_TTS_OPENAI_API_KEY | |
app.state.config.TTS_ENGINE = AUDIO_TTS_ENGINE | |
app.state.config.TTS_MODEL = AUDIO_TTS_MODEL | |
app.state.config.TTS_VOICE = AUDIO_TTS_VOICE | |
app.state.config.TTS_API_KEY = AUDIO_TTS_API_KEY | |
app.state.config.TTS_SPLIT_ON = AUDIO_TTS_SPLIT_ON | |
app.state.speech_synthesiser = None | |
app.state.speech_speaker_embeddings_dataset = None | |
app.state.config.TTS_AZURE_SPEECH_REGION = AUDIO_TTS_AZURE_SPEECH_REGION | |
app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT | |
# setting device type for whisper model | |
whisper_device_type = DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu" | |
log.info(f"whisper_device_type: {whisper_device_type}") | |
SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/") | |
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True) | |
def set_faster_whisper_model(model: str, auto_update: bool = False): | |
if model and app.state.config.STT_ENGINE == "": | |
from faster_whisper import WhisperModel | |
faster_whisper_kwargs = { | |
"model_size_or_path": model, | |
"device": whisper_device_type, | |
"compute_type": "int8", | |
"download_root": WHISPER_MODEL_DIR, | |
"local_files_only": not auto_update, | |
} | |
try: | |
app.state.faster_whisper_model = WhisperModel(**faster_whisper_kwargs) | |
except Exception: | |
log.warning( | |
"WhisperModel initialization failed, attempting download with local_files_only=False" | |
) | |
faster_whisper_kwargs["local_files_only"] = False | |
app.state.faster_whisper_model = WhisperModel(**faster_whisper_kwargs) | |
else: | |
app.state.faster_whisper_model = None | |
class TTSConfigForm(BaseModel): | |
OPENAI_API_BASE_URL: str | |
OPENAI_API_KEY: str | |
API_KEY: str | |
ENGINE: str | |
MODEL: str | |
VOICE: str | |
SPLIT_ON: str | |
AZURE_SPEECH_REGION: str | |
AZURE_SPEECH_OUTPUT_FORMAT: str | |
class STTConfigForm(BaseModel): | |
OPENAI_API_BASE_URL: str | |
OPENAI_API_KEY: str | |
ENGINE: str | |
MODEL: str | |
WHISPER_MODEL: str | |
class AudioConfigUpdateForm(BaseModel): | |
tts: TTSConfigForm | |
stt: STTConfigForm | |
from pydub import AudioSegment | |
from pydub.utils import mediainfo | |
def is_mp4_audio(file_path): | |
"""Check if the given file is an MP4 audio file.""" | |
if not os.path.isfile(file_path): | |
print(f"File not found: {file_path}") | |
return False | |
info = mediainfo(file_path) | |
if ( | |
info.get("codec_name") == "aac" | |
and info.get("codec_type") == "audio" | |
and info.get("codec_tag_string") == "mp4a" | |
): | |
return True | |
return False | |
def convert_mp4_to_wav(file_path, output_path): | |
"""Convert MP4 audio file to WAV format.""" | |
audio = AudioSegment.from_file(file_path, format="mp4") | |
audio.export(output_path, format="wav") | |
print(f"Converted {file_path} to {output_path}") | |
async def get_audio_config(user=Depends(get_admin_user)): | |
return { | |
"tts": { | |
"OPENAI_API_BASE_URL": app.state.config.TTS_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": app.state.config.TTS_OPENAI_API_KEY, | |
"API_KEY": app.state.config.TTS_API_KEY, | |
"ENGINE": app.state.config.TTS_ENGINE, | |
"MODEL": app.state.config.TTS_MODEL, | |
"VOICE": app.state.config.TTS_VOICE, | |
"SPLIT_ON": app.state.config.TTS_SPLIT_ON, | |
"AZURE_SPEECH_REGION": app.state.config.TTS_AZURE_SPEECH_REGION, | |
"AZURE_SPEECH_OUTPUT_FORMAT": app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, | |
}, | |
"stt": { | |
"OPENAI_API_BASE_URL": app.state.config.STT_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": app.state.config.STT_OPENAI_API_KEY, | |
"ENGINE": app.state.config.STT_ENGINE, | |
"MODEL": app.state.config.STT_MODEL, | |
"WHISPER_MODEL": app.state.config.WHISPER_MODEL, | |
}, | |
} | |
async def update_audio_config( | |
form_data: AudioConfigUpdateForm, user=Depends(get_admin_user) | |
): | |
app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL | |
app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY | |
app.state.config.TTS_API_KEY = form_data.tts.API_KEY | |
app.state.config.TTS_ENGINE = form_data.tts.ENGINE | |
app.state.config.TTS_MODEL = form_data.tts.MODEL | |
app.state.config.TTS_VOICE = form_data.tts.VOICE | |
app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON | |
app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION | |
app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = ( | |
form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT | |
) | |
app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL | |
app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY | |
app.state.config.STT_ENGINE = form_data.stt.ENGINE | |
app.state.config.STT_MODEL = form_data.stt.MODEL | |
app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL | |
set_faster_whisper_model(form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE) | |
return { | |
"tts": { | |
"OPENAI_API_BASE_URL": app.state.config.TTS_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": app.state.config.TTS_OPENAI_API_KEY, | |
"API_KEY": app.state.config.TTS_API_KEY, | |
"ENGINE": app.state.config.TTS_ENGINE, | |
"MODEL": app.state.config.TTS_MODEL, | |
"VOICE": app.state.config.TTS_VOICE, | |
"SPLIT_ON": app.state.config.TTS_SPLIT_ON, | |
"AZURE_SPEECH_REGION": app.state.config.TTS_AZURE_SPEECH_REGION, | |
"AZURE_SPEECH_OUTPUT_FORMAT": app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, | |
}, | |
"stt": { | |
"OPENAI_API_BASE_URL": app.state.config.STT_OPENAI_API_BASE_URL, | |
"OPENAI_API_KEY": app.state.config.STT_OPENAI_API_KEY, | |
"ENGINE": app.state.config.STT_ENGINE, | |
"MODEL": app.state.config.STT_MODEL, | |
"WHISPER_MODEL": app.state.config.WHISPER_MODEL, | |
}, | |
} | |
def load_speech_pipeline(): | |
from transformers import pipeline | |
from datasets import load_dataset | |
if app.state.speech_synthesiser is None: | |
app.state.speech_synthesiser = pipeline( | |
"text-to-speech", "microsoft/speecht5_tts" | |
) | |
if app.state.speech_speaker_embeddings_dataset is None: | |
app.state.speech_speaker_embeddings_dataset = load_dataset( | |
"Matthijs/cmu-arctic-xvectors", split="validation" | |
) | |
async def speech(request: Request, user=Depends(get_verified_user)): | |
body = await request.body() | |
name = hashlib.sha256(body).hexdigest() | |
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3") | |
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json") | |
# Check if the file already exists in the cache | |
if file_path.is_file(): | |
return FileResponse(file_path) | |
if app.state.config.TTS_ENGINE == "openai": | |
headers = {} | |
headers["Authorization"] = f"Bearer {app.state.config.TTS_OPENAI_API_KEY}" | |
headers["Content-Type"] = "application/json" | |
if ENABLE_FORWARD_USER_INFO_HEADERS: | |
headers["X-OpenWebUI-User-Name"] = user.name | |
headers["X-OpenWebUI-User-Id"] = user.id | |
headers["X-OpenWebUI-User-Email"] = user.email | |
headers["X-OpenWebUI-User-Role"] = user.role | |
try: | |
body = body.decode("utf-8") | |
body = json.loads(body) | |
body["model"] = app.state.config.TTS_MODEL | |
body = json.dumps(body).encode("utf-8") | |
except Exception: | |
pass | |
try: | |
async with aiohttp.ClientSession() as session: | |
async with session.post( | |
url=f"{app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech", | |
data=body, | |
headers=headers, | |
) as r: | |
r.raise_for_status() | |
async with aiofiles.open(file_path, "wb") as f: | |
await f.write(await r.read()) | |
async with aiofiles.open(file_body_path, "w") as f: | |
await f.write(json.dumps(json.loads(body.decode("utf-8")))) | |
return FileResponse(file_path) | |
except Exception as e: | |
log.exception(e) | |
error_detail = "Open WebUI: Server Connection Error" | |
try: | |
if r.status != 200: | |
res = await r.json() | |
if "error" in res: | |
error_detail = f"External: {res['error']['message']}" | |
except Exception: | |
error_detail = f"External: {e}" | |
raise HTTPException( | |
status_code=getattr(r, "status", 500), | |
detail=error_detail, | |
) | |
elif app.state.config.TTS_ENGINE == "elevenlabs": | |
try: | |
payload = json.loads(body.decode("utf-8")) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException(status_code=400, detail="Invalid JSON payload") | |
voice_id = payload.get("voice", "") | |
if voice_id not in get_available_voices(): | |
raise HTTPException( | |
status_code=400, | |
detail="Invalid voice id", | |
) | |
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" | |
headers = { | |
"Accept": "audio/mpeg", | |
"Content-Type": "application/json", | |
"xi-api-key": app.state.config.TTS_API_KEY, | |
} | |
data = { | |
"text": payload["input"], | |
"model_id": app.state.config.TTS_MODEL, | |
"voice_settings": {"stability": 0.5, "similarity_boost": 0.5}, | |
} | |
try: | |
async with aiohttp.ClientSession() as session: | |
async with session.post(url, json=data, headers=headers) as r: | |
r.raise_for_status() | |
async with aiofiles.open(file_path, "wb") as f: | |
await f.write(await r.read()) | |
async with aiofiles.open(file_body_path, "w") as f: | |
await f.write(json.dumps(json.loads(body.decode("utf-8")))) | |
return FileResponse(file_path) | |
except Exception as e: | |
log.exception(e) | |
error_detail = "Open WebUI: Server Connection Error" | |
try: | |
if r.status != 200: | |
res = await r.json() | |
if "error" in res: | |
error_detail = f"External: {res['error']['message']}" | |
except Exception: | |
error_detail = f"External: {e}" | |
raise HTTPException( | |
status_code=getattr(r, "status", 500), | |
detail=error_detail, | |
) | |
elif app.state.config.TTS_ENGINE == "azure": | |
try: | |
payload = json.loads(body.decode("utf-8")) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException(status_code=400, detail="Invalid JSON payload") | |
region = app.state.config.TTS_AZURE_SPEECH_REGION | |
language = app.state.config.TTS_VOICE | |
locale = "-".join(app.state.config.TTS_VOICE.split("-")[:1]) | |
output_format = app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT | |
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1" | |
headers = { | |
"Ocp-Apim-Subscription-Key": app.state.config.TTS_API_KEY, | |
"Content-Type": "application/ssml+xml", | |
"X-Microsoft-OutputFormat": output_format, | |
} | |
data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}"> | |
<voice name="{language}">{payload["input"]}</voice> | |
</speak>""" | |
try: | |
async with aiohttp.ClientSession() as session: | |
async with session.post(url, headers=headers, data=data) as response: | |
if response.status == 200: | |
async with aiofiles.open(file_path, "wb") as f: | |
await f.write(await response.read()) | |
return FileResponse(file_path) | |
else: | |
error_msg = f"Error synthesizing speech - {response.reason}" | |
log.error(error_msg) | |
raise HTTPException(status_code=500, detail=error_msg) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException(status_code=500, detail=str(e)) | |
elif app.state.config.TTS_ENGINE == "transformers": | |
payload = None | |
try: | |
payload = json.loads(body.decode("utf-8")) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException(status_code=400, detail="Invalid JSON payload") | |
import torch | |
import soundfile as sf | |
load_speech_pipeline() | |
embeddings_dataset = app.state.speech_speaker_embeddings_dataset | |
speaker_index = 6799 | |
try: | |
speaker_index = embeddings_dataset["filename"].index( | |
app.state.config.TTS_MODEL | |
) | |
except Exception: | |
pass | |
speaker_embedding = torch.tensor( | |
embeddings_dataset[speaker_index]["xvector"] | |
).unsqueeze(0) | |
speech = app.state.speech_synthesiser( | |
payload["input"], | |
forward_params={"speaker_embeddings": speaker_embedding}, | |
) | |
sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"]) | |
with open(file_body_path, "w") as f: | |
json.dump(json.loads(body.decode("utf-8")), f) | |
return FileResponse(file_path) | |
def transcribe(file_path): | |
print("transcribe", file_path) | |
filename = os.path.basename(file_path) | |
file_dir = os.path.dirname(file_path) | |
id = filename.split(".")[0] | |
if app.state.config.STT_ENGINE == "": | |
if app.state.faster_whisper_model is None: | |
set_faster_whisper_model(app.state.config.WHISPER_MODEL) | |
model = app.state.faster_whisper_model | |
segments, info = model.transcribe(file_path, beam_size=5) | |
log.info( | |
"Detected language '%s' with probability %f" | |
% (info.language, info.language_probability) | |
) | |
transcript = "".join([segment.text for segment in list(segments)]) | |
data = {"text": transcript.strip()} | |
# save the transcript to a json file | |
transcript_file = f"{file_dir}/{id}.json" | |
with open(transcript_file, "w") as f: | |
json.dump(data, f) | |
log.debug(data) | |
return data | |
elif app.state.config.STT_ENGINE == "openai": | |
if is_mp4_audio(file_path): | |
print("is_mp4_audio") | |
os.rename(file_path, file_path.replace(".wav", ".mp4")) | |
# Convert MP4 audio file to WAV format | |
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path) | |
headers = {"Authorization": f"Bearer {app.state.config.STT_OPENAI_API_KEY}"} | |
files = {"file": (filename, open(file_path, "rb"))} | |
data = {"model": app.state.config.STT_MODEL} | |
log.debug(files, data) | |
r = None | |
try: | |
r = requests.post( | |
url=f"{app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions", | |
headers=headers, | |
files=files, | |
data=data, | |
) | |
r.raise_for_status() | |
data = r.json() | |
# save the transcript to a json file | |
transcript_file = f"{file_dir}/{id}.json" | |
with open(transcript_file, "w") as f: | |
json.dump(data, f) | |
print(data) | |
return data | |
except Exception as e: | |
log.exception(e) | |
error_detail = "Open WebUI: Server Connection Error" | |
if r is not None: | |
try: | |
res = r.json() | |
if "error" in res: | |
error_detail = f"External: {res['error']['message']}" | |
except Exception: | |
error_detail = f"External: {e}" | |
raise Exception(error_detail) | |
def transcription( | |
file: UploadFile = File(...), | |
user=Depends(get_verified_user), | |
): | |
log.info(f"file.content_type: {file.content_type}") | |
if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED, | |
) | |
try: | |
ext = file.filename.split(".")[-1] | |
id = uuid.uuid4() | |
filename = f"{id}.{ext}" | |
contents = file.file.read() | |
file_dir = f"{CACHE_DIR}/audio/transcriptions" | |
os.makedirs(file_dir, exist_ok=True) | |
file_path = f"{file_dir}/{filename}" | |
with open(file_path, "wb") as f: | |
f.write(contents) | |
try: | |
if os.path.getsize(file_path) > MAX_FILE_SIZE: # file is bigger than 25MB | |
log.debug(f"File size is larger than {MAX_FILE_SIZE_MB}MB") | |
audio = AudioSegment.from_file(file_path) | |
audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio | |
compressed_path = f"{file_dir}/{id}_compressed.opus" | |
audio.export(compressed_path, format="opus", bitrate="32k") | |
log.debug(f"Compressed audio to {compressed_path}") | |
file_path = compressed_path | |
if ( | |
os.path.getsize(file_path) > MAX_FILE_SIZE | |
): # Still larger than 25MB after compression | |
log.debug( | |
f"Compressed file size is still larger than {MAX_FILE_SIZE_MB}MB: {os.path.getsize(file_path)}" | |
) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.FILE_TOO_LARGE( | |
size=f"{MAX_FILE_SIZE_MB}MB" | |
), | |
) | |
data = transcribe(file_path) | |
else: | |
data = transcribe(file_path) | |
file_path = file_path.split("/")[-1] | |
return {**data, "filename": file_path} | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
def get_available_models() -> list[dict]: | |
if app.state.config.TTS_ENGINE == "openai": | |
return [{"id": "tts-1"}, {"id": "tts-1-hd"}] | |
elif app.state.config.TTS_ENGINE == "elevenlabs": | |
headers = { | |
"xi-api-key": app.state.config.TTS_API_KEY, | |
"Content-Type": "application/json", | |
} | |
try: | |
response = requests.get( | |
"https://api.elevenlabs.io/v1/models", headers=headers, timeout=5 | |
) | |
response.raise_for_status() | |
models = response.json() | |
return [ | |
{"name": model["name"], "id": model["model_id"]} for model in models | |
] | |
except requests.RequestException as e: | |
log.error(f"Error fetching voices: {str(e)}") | |
return [] | |
async def get_models(user=Depends(get_verified_user)): | |
return {"models": get_available_models()} | |
def get_available_voices() -> dict: | |
"""Returns {voice_id: voice_name} dict""" | |
ret = {} | |
if app.state.config.TTS_ENGINE == "openai": | |
ret = { | |
"alloy": "alloy", | |
"echo": "echo", | |
"fable": "fable", | |
"onyx": "onyx", | |
"nova": "nova", | |
"shimmer": "shimmer", | |
} | |
elif app.state.config.TTS_ENGINE == "elevenlabs": | |
try: | |
ret = get_elevenlabs_voices() | |
except Exception: | |
# Avoided @lru_cache with exception | |
pass | |
elif app.state.config.TTS_ENGINE == "azure": | |
try: | |
region = app.state.config.TTS_AZURE_SPEECH_REGION | |
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list" | |
headers = {"Ocp-Apim-Subscription-Key": app.state.config.TTS_API_KEY} | |
response = requests.get(url, headers=headers) | |
response.raise_for_status() | |
voices = response.json() | |
for voice in voices: | |
ret[voice["ShortName"]] = ( | |
f"{voice['DisplayName']} ({voice['ShortName']})" | |
) | |
except requests.RequestException as e: | |
log.error(f"Error fetching voices: {str(e)}") | |
return ret | |
def get_elevenlabs_voices() -> dict: | |
""" | |
Note, set the following in your .env file to use Elevenlabs: | |
AUDIO_TTS_ENGINE=elevenlabs | |
AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key | |
AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices | |
AUDIO_TTS_MODEL=eleven_multilingual_v2 | |
""" | |
headers = { | |
"xi-api-key": app.state.config.TTS_API_KEY, | |
"Content-Type": "application/json", | |
} | |
try: | |
# TODO: Add retries | |
response = requests.get("https://api.elevenlabs.io/v1/voices", headers=headers) | |
response.raise_for_status() | |
voices_data = response.json() | |
voices = {} | |
for voice in voices_data.get("voices", []): | |
voices[voice["voice_id"]] = voice["name"] | |
except requests.RequestException as e: | |
# Avoid @lru_cache with exception | |
log.error(f"Error fetching voices: {str(e)}") | |
raise RuntimeError(f"Error fetching voices: {str(e)}") | |
return voices | |
async def get_voices(user=Depends(get_verified_user)): | |
return {"voices": [{"id": k, "name": v} for k, v in get_available_voices().items()]} | |