Spaces:
Paused
Paused
| import os | |
| import torch | |
| import numpy as np | |
| from colbert.infra import ColBERTConfig | |
| from colbert.modeling.checkpoint import Checkpoint | |
| class ColBERT: | |
| def __init__(self, name, **kwargs) -> None: | |
| print("ColBERT: Loading model", name) | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| DOCKER = kwargs.get("env") == "docker" | |
| if DOCKER: | |
| # This is a workaround for the issue with the docker container | |
| # where the torch extension is not loaded properly | |
| # and the following error is thrown: | |
| # /root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/segmented_maxsim_cpp.so: cannot open shared object file: No such file or directory | |
| lock_file = ( | |
| "/root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/lock" | |
| ) | |
| if os.path.exists(lock_file): | |
| os.remove(lock_file) | |
| self.ckpt = Checkpoint( | |
| name, | |
| colbert_config=ColBERTConfig(model_name=name), | |
| ).to(self.device) | |
| pass | |
| def calculate_similarity_scores(self, query_embeddings, document_embeddings): | |
| query_embeddings = query_embeddings.to(self.device) | |
| document_embeddings = document_embeddings.to(self.device) | |
| # Validate dimensions to ensure compatibility | |
| if query_embeddings.dim() != 3: | |
| raise ValueError( | |
| f"Expected query embeddings to have 3 dimensions, but got {query_embeddings.dim()}." | |
| ) | |
| if document_embeddings.dim() != 3: | |
| raise ValueError( | |
| f"Expected document embeddings to have 3 dimensions, but got {document_embeddings.dim()}." | |
| ) | |
| if query_embeddings.size(0) not in [1, document_embeddings.size(0)]: | |
| raise ValueError( | |
| "There should be either one query or queries equal to the number of documents." | |
| ) | |
| # Transpose the query embeddings to align for matrix multiplication | |
| transposed_query_embeddings = query_embeddings.permute(0, 2, 1) | |
| # Compute similarity scores using batch matrix multiplication | |
| computed_scores = torch.matmul(document_embeddings, transposed_query_embeddings) | |
| # Apply max pooling to extract the highest semantic similarity across each document's sequence | |
| maximum_scores = torch.max(computed_scores, dim=1).values | |
| # Sum up the maximum scores across features to get the overall document relevance scores | |
| final_scores = maximum_scores.sum(dim=1) | |
| normalized_scores = torch.softmax(final_scores, dim=0) | |
| return normalized_scores.detach().cpu().numpy().astype(np.float32) | |
| def predict(self, sentences): | |
| query = sentences[0][0] | |
| docs = [i[1] for i in sentences] | |
| # Embedding the documents | |
| embedded_docs = self.ckpt.docFromText(docs, bsize=32)[0] | |
| # Embedding the queries | |
| embedded_queries = self.ckpt.queryFromText([query], bsize=32) | |
| embedded_query = embedded_queries[0] | |
| # Calculate retrieval scores for the query against all documents | |
| scores = self.calculate_similarity_scores( | |
| embedded_query.unsqueeze(0), embedded_docs | |
| ) | |
| return scores | |