Spaces:
Runtime error
Runtime error
File size: 4,104 Bytes
eaa0108 11faaa8 eaa0108 f4bfdf3 eaa0108 6769233 eaa0108 c4d6365 a70ca41 eaa0108 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import Settings
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import SummaryIndex, VectorStoreIndex
from llama_index.core.tools import QueryEngineTool
from llama_index.core.query_engine.router_query_engine import RouterQueryEngine
from llama_index.core.selectors import LLMSingleSelector
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.groq import Groq
from llama_index.core import Settings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from dotenv import load_dotenv
load_dotenv()
GROQ_API_KEY = os.getenv("groqkey")
embed_model= HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
llm = Groq(model="llama3-70b-8192", api_key=GROQ_API_KEY)
Settings.llm = llm
Settings.embed_model = embed_model
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("files",required_exts=[".pdf", ".csv"]).load_data()
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
import qdrant_client
client = qdrant_client.QdrantClient(
location=":memory:",
)
vector_store = QdrantVectorStore(
collection_name = "paper",
client=client,
enable_hybrid=True,
batch_size=20,
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
embed_model=embed_model,
storage_context=storage_context,
)
from llama_index.core.memory import ChatMemoryBuffer
memory = ChatMemoryBuffer.from_defaults(token_limit= 3000)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=(
"You are an AI assistant who answers the user questions"
),
)
def is_greeting(user_input):
greetings = ["hello", "hi", "hey", "good morning", "good afternoon", "good evening", "greetings"]
user_input_lower = user_input.lower().strip()
return any(greet in user_input_lower for greet in greetings)
def is_bye(user_input):
greetings = ["bye","thanks", "thank you", "thanks a lot", "bye bye", "have a good day"]
user_input_lower = user_input.lower().strip()
return any(greet in user_input_lower for greet in greetings)
import gradio as gr
def chat_with_ai(user_input, chat_history):
if is_greeting(str(user_input)):
response = 'hi,how can i help you?'
chat_history.append((user_input, response))
return chat_history, ""
if is_bye(str(user_input)):
response = "you're welcome"
chat_history.append((user_input, response))
return chat_history, ""
response = chat_engine.chat(user_input)
full_text = response.response
references = response.source_nodes
ref,pages = [],[]
for i in range(len(references)):
if references[i].metadata['file_name'] not in ref:
ref.append(references[i].metadata['file_name'])
# pages.append(references[i].metadata['page_label'])
complete_response = str(full_text) + "\n\n" + "references: " + str(ref)
if ref !=[] :
chat_history.append((user_input, complete_response))
ref = []
elif ref==[] :
chat_history.append((user_input,str(response)))
return chat_history, ""
def gradio_chatbot():
with gr.Blocks() as demo:
gr.Markdown("# Chat Interface for llama3.1_70B with Groq and llama_index")
chatbot = gr.Chatbot(label="llamaindex Chatbot")
user_input = gr.Textbox(
placeholder="Ask a question...", label="Enter your question"
)
submit_button = gr.Button("Send")
chat_history = gr.State([])
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
return demo
gradio_chatbot().launch(debug=True) |