File size: 6,560 Bytes
71c916b
f1fd3e0
 
 
765ede8
 
c9eadbe
765ede8
c1ca5a1
c9eadbe
 
 
71c916b
 
765ede8
72ba547
f1fd3e0
765ede8
215277a
c9eadbe
 
 
f1fd3e0
765ede8
 
 
c9eadbe
f1fd3e0
 
 
 
 
 
 
 
c9eadbe
 
1e22681
f1fd3e0
c9eadbe
 
 
 
 
f1fd3e0
c9eadbe
f1fd3e0
 
 
c9eadbe
 
f1fd3e0
 
 
c9eadbe
 
 
 
f1fd3e0
c9eadbe
 
 
f1fd3e0
 
c9eadbe
 
 
 
 
 
 
 
 
 
4e3419a
 
 
 
 
c9eadbe
4e3419a
 
 
f1fd3e0
c9eadbe
 
 
 
 
 
 
 
f1fd3e0
c9eadbe
 
 
f1fd3e0
c9eadbe
 
 
 
 
 
f1fd3e0
c9eadbe
 
f1fd3e0
 
 
 
c9eadbe
f1fd3e0
 
c9eadbe
1e22681
765ede8
f1fd3e0
 
 
 
71c916b
67c6e4d
c9eadbe
f1fd3e0
c9eadbe
f1fd3e0
 
 
 
 
 
c9eadbe
f1fd3e0
 
 
765ede8
 
 
 
 
f1fd3e0
765ede8
97c22f1
f1fd3e0
 
 
d29b8ab
c9eadbe
 
 
 
 
f1fd3e0
 
 
 
 
 
97c22f1
f1fd3e0
 
 
 
 
 
 
 
 
 
 
 
 
765ede8
71c916b
f1fd3e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import shutil
import gradio as gr
import qdrant_client
from getpass import getpass

# Set your OpenAI API key from environment variables.
openai_api_key = os.getenv('OPENAI_API_KEY')

# -------------------------------------------------------
# Configure LlamaIndex with OpenAI LLM and Embeddings
# -------------------------------------------------------
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings

Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")

# -------------------------------------------------------
# Import document readers, index, vector store, memory, etc.
# -------------------------------------------------------
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core.memory import ChatMemoryBuffer

# Global variables to hold persistent objects.
chat_engine = None
index = None
query_engine = None
memory = None
client = None
vector_store = None
storage_context = None

# Define a global collection name (you can change this as needed)
collection_name = "paper"

def process_upload(files):
    """
    Process newly uploaded files by copying them into a persistent folder,
    loading their content, and then either building a new index or inserting
    new documents into the existing index.
    """
    upload_dir = "uploaded_files"
    # Create the upload folder if it does not exist.
    if not os.path.exists(upload_dir):
        os.makedirs(upload_dir)
    
    # Copy new files into the upload directory.
    new_file_paths = []
    for file_path in files:
        file_name = os.path.basename(file_path)
        dest = os.path.join(upload_dir, file_name)
        # Copy the file if it doesn't already exist.
        if not os.path.exists(dest):
            shutil.copy(file_path, dest)
        new_file_paths.append(dest)
    
    # Load only the newly uploaded documents.
    # (SimpleDirectoryReader can accept a list of file paths via the 'input_files' parameter.)
    documents = SimpleDirectoryReader(input_files=new_file_paths).load_data()
    
    global client, vector_store, storage_context, index, query_engine, memory, chat_engine

    # Initialize Qdrant client if not already done.
    if client is None:
        client = qdrant_client.QdrantClient(
            path="./qdrant_db",  
            prefer_grpc=True
        )
    
    # Ensure the collection exists.
    from qdrant_client.http import models
    existing_collections = {col.name for col in client.get_collections().collections}
    if collection_name not in existing_collections:
        client.create_collection(
            collection_name=collection_name,
            vectors_config=models.VectorParams(
                size=1536,  # OpenAI's text-embedding-ada-002 produces 1536-d vectors.
                distance=models.Distance.COSINE
            )
        )
    
    # Initialize the vector store if not already done.
    if vector_store is None:
        vector_store = QdrantVectorStore(
            collection_name=collection_name,
            client=client,
            enable_hybrid=True,
            batch_size=20,
        )
    
    # Initialize storage context if not already done.
    if storage_context is None:
        storage_context = StorageContext.from_defaults(vector_store=vector_store)
    
    # If no index exists yet, create one from the documents.
    if index is None:
        index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
    else:
        # Append the new documents to the existing index.
        index.insert_documents(documents)
    
    # (Optional) Reinitialize the query and chat engines so they reflect the updated index.
    query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
    memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
    chat_engine = index.as_chat_engine(
        chat_mode="context",
        memory=memory,
        system_prompt="You are an AI assistant who answers the user questions,"
    )
    
    return "Documents uploaded and index updated successfully!"

def chat_with_ai(user_input, chat_history):
    global chat_engine
    if chat_engine is None:
        return chat_history, "Please upload documents first."
    
    response = chat_engine.chat(user_input)
    references = response.source_nodes
    ref = []
    
    # Extract referenced file names from the response.
    for node in references:
        file_name = node.metadata.get('file_name')
        if file_name and file_name not in ref:
            ref.append(file_name)
    
    complete_response = str(response) + "\n\n"
    if ref:
        chat_history.append((user_input, complete_response))
    else:
        chat_history.append((user_input, str(response)))
    return chat_history, ""

def clear_history():
    return [], ""

def gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# AI Assistant")
        
        with gr.Tab("Upload Documents"):
            gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
            file_upload = gr.File(
                label="Upload Files",
                file_count="multiple",
                file_types=[".pdf", ".csv", ".txt", ".xlsx", ".xls", ".doc", ".docx"],
                type="filepath"  # Returns file paths.
            )
            upload_status = gr.Textbox(label="Upload Status", interactive=False)
            upload_button = gr.Button("Process Upload")
            
            upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
        
        with gr.Tab("Chat"):
            chatbot = gr.Chatbot(label="AI Assistant Chat Interface")
            user_input = gr.Textbox(
                placeholder="Ask a question...", label="Enter your question"
            )
            submit_button = gr.Button("Send")
            btn_clear = gr.Button("Clear History")
            
            # A State to hold the chat history.
            chat_history = gr.State([])
            
            submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
            user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
            btn_clear.click(clear_history, outputs=[chatbot, user_input])
    
    return demo

gradio_interface().launch(debug=True)