File size: 6,560 Bytes
71c916b f1fd3e0 765ede8 c9eadbe 765ede8 c1ca5a1 c9eadbe 71c916b 765ede8 72ba547 f1fd3e0 765ede8 215277a c9eadbe f1fd3e0 765ede8 c9eadbe f1fd3e0 c9eadbe 1e22681 f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe 4e3419a c9eadbe 4e3419a f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe 1e22681 765ede8 f1fd3e0 71c916b 67c6e4d c9eadbe f1fd3e0 c9eadbe f1fd3e0 c9eadbe f1fd3e0 765ede8 f1fd3e0 765ede8 97c22f1 f1fd3e0 d29b8ab c9eadbe f1fd3e0 97c22f1 f1fd3e0 765ede8 71c916b f1fd3e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import shutil
import gradio as gr
import qdrant_client
from getpass import getpass
# Set your OpenAI API key from environment variables.
openai_api_key = os.getenv('OPENAI_API_KEY')
# -------------------------------------------------------
# Configure LlamaIndex with OpenAI LLM and Embeddings
# -------------------------------------------------------
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
# -------------------------------------------------------
# Import document readers, index, vector store, memory, etc.
# -------------------------------------------------------
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core.memory import ChatMemoryBuffer
# Global variables to hold persistent objects.
chat_engine = None
index = None
query_engine = None
memory = None
client = None
vector_store = None
storage_context = None
# Define a global collection name (you can change this as needed)
collection_name = "paper"
def process_upload(files):
"""
Process newly uploaded files by copying them into a persistent folder,
loading their content, and then either building a new index or inserting
new documents into the existing index.
"""
upload_dir = "uploaded_files"
# Create the upload folder if it does not exist.
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
# Copy new files into the upload directory.
new_file_paths = []
for file_path in files:
file_name = os.path.basename(file_path)
dest = os.path.join(upload_dir, file_name)
# Copy the file if it doesn't already exist.
if not os.path.exists(dest):
shutil.copy(file_path, dest)
new_file_paths.append(dest)
# Load only the newly uploaded documents.
# (SimpleDirectoryReader can accept a list of file paths via the 'input_files' parameter.)
documents = SimpleDirectoryReader(input_files=new_file_paths).load_data()
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
# Initialize Qdrant client if not already done.
if client is None:
client = qdrant_client.QdrantClient(
path="./qdrant_db",
prefer_grpc=True
)
# Ensure the collection exists.
from qdrant_client.http import models
existing_collections = {col.name for col in client.get_collections().collections}
if collection_name not in existing_collections:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=1536, # OpenAI's text-embedding-ada-002 produces 1536-d vectors.
distance=models.Distance.COSINE
)
)
# Initialize the vector store if not already done.
if vector_store is None:
vector_store = QdrantVectorStore(
collection_name=collection_name,
client=client,
enable_hybrid=True,
batch_size=20,
)
# Initialize storage context if not already done.
if storage_context is None:
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# If no index exists yet, create one from the documents.
if index is None:
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
else:
# Append the new documents to the existing index.
index.insert_documents(documents)
# (Optional) Reinitialize the query and chat engines so they reflect the updated index.
query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt="You are an AI assistant who answers the user questions,"
)
return "Documents uploaded and index updated successfully!"
def chat_with_ai(user_input, chat_history):
global chat_engine
if chat_engine is None:
return chat_history, "Please upload documents first."
response = chat_engine.chat(user_input)
references = response.source_nodes
ref = []
# Extract referenced file names from the response.
for node in references:
file_name = node.metadata.get('file_name')
if file_name and file_name not in ref:
ref.append(file_name)
complete_response = str(response) + "\n\n"
if ref:
chat_history.append((user_input, complete_response))
else:
chat_history.append((user_input, str(response)))
return chat_history, ""
def clear_history():
return [], ""
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# AI Assistant")
with gr.Tab("Upload Documents"):
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
file_upload = gr.File(
label="Upload Files",
file_count="multiple",
file_types=[".pdf", ".csv", ".txt", ".xlsx", ".xls", ".doc", ".docx"],
type="filepath" # Returns file paths.
)
upload_status = gr.Textbox(label="Upload Status", interactive=False)
upload_button = gr.Button("Process Upload")
upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
with gr.Tab("Chat"):
chatbot = gr.Chatbot(label="AI Assistant Chat Interface")
user_input = gr.Textbox(
placeholder="Ask a question...", label="Enter your question"
)
submit_button = gr.Button("Send")
btn_clear = gr.Button("Clear History")
# A State to hold the chat history.
chat_history = gr.State([])
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
btn_clear.click(clear_history, outputs=[chatbot, user_input])
return demo
gradio_interface().launch(debug=True)
|