File size: 3,739 Bytes
71c916b
765ede8
 
 
 
 
c1ca5a1
71c916b
 
765ede8
72ba547
c1ca5a1
765ede8
215277a
765ede8
29c811a
765ede8
71c916b
765ede8
 
 
29c811a
765ede8
 
 
29c811a
71c916b
c1ca5a1
71c916b
 
 
 
765ede8
71c916b
72ba547
765ede8
 
 
 
 
 
 
 
 
 
 
 
 
71c916b
 
765ede8
 
 
c1ca5a1
765ede8
71c916b
 
c1ca5a1
90b92b4
c1ca5a1
 
 
 
 
 
 
 
 
765ede8
c1ca5a1
 
 
 
 
 
 
 
71c916b
67c6e4d
c1ca5a1
765ede8
c1ca5a1
 
 
 
 
 
 
 
 
765ede8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ca5a1
765ede8
 
 
 
 
 
 
c1ca5a1
765ede8
 
71c916b
765ede8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
from getpass import getpass

openai_api_key = os.getenv('OPENAI_API_KEY')
openai_api_key = openai_api_key


from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings

Settings.llm = OpenAI(model="gpt-3.5-turbo",temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")

from llama_index.core import SimpleDirectoryReader

documents = SimpleDirectoryReader("new_file").load_data()

from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
import qdrant_client

client = qdrant_client.QdrantClient(
    location=":memory:",
)

vector_store = QdrantVectorStore(
    collection_name = "paper",
    client=client,
    enable_hybrid=True,
    batch_size=20,
)

storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents,
    storage_context=storage_context,
)

query_engine = index.as_query_engine(
    vector_store_query_mode="hybrid"
)

from llama_index.core.memory import ChatMemoryBuffer

memory = ChatMemoryBuffer.from_defaults(token_limit=3000)

chat_engine = index.as_chat_engine(
    chat_mode="context",
    memory=memory,
    system_prompt=(
        """You are an AI assistant who answers the user questions,
           use the schema fields to generate appriopriate and valid json queries"""
    ),
)

# def is_greeting(user_input):

#     greetings = ["hello", "hi", "hey", "good morning", "good afternoon", "good evening", "greetings"]
#     user_input_lower = user_input.lower().strip()
#     return any(greet in user_input_lower for greet in greetings)
# def is_bye(user_input):

#     greetings = ["thanks", "thanks you", "thanks a lot", "good answer", "good bye", "bye bye"]
#     user_input_lower = user_input.lower().strip()
#     return any(greet in user_input_lower for greet in greetings)
import gradio as gr
def chat_with_ai(user_input, chat_history):
    # if is_greeting(user_input):
    #     response = 'hi, how can i help you?'
    #     chat_history.append((user_input, response))
    #     return chat_history, ""
    # elif is_bye(user_input):
    #     response = "you're wlocome"
    #     chat_history.append((user_input, response))
    #     return chat_history, ""
    response = chat_engine.chat(user_input)
    references = response.source_nodes
    ref,pages = [],[]
    for i in range(len(references)):
      if references[i].metadata['file_name'] not in ref:
        ref.append(references[i].metadata['file_name'])
      # pages.append(references[i].metadata['page_label'])
    complete_response = str(response) + "\n\n" 
    if ref !=[] or pages!=[]:
      chat_history.append((user_input, complete_response))
      ref = []
    elif ref==[] or pages==[]:
      chat_history.append((user_input,str(response)))
        
    return chat_history, ""

def clear_history():
    return [], ""

def gradio_chatbot():
    with gr.Blocks() as demo:
        gr.Markdown("# Chat Interface for LlamaIndex")

        chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
        user_input = gr.Textbox(
            placeholder="Ask a question...", label="Enter your question"
        )

        submit_button = gr.Button("Send")
        btn_clear = gr.Button("Delete Context") 


        chat_history = gr.State([])

        submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])

        user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
        btn_clear.click(fn=clear_history, outputs=[chatbot, user_input])  

    return demo

gradio_chatbot().launch(debug=True)