Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,20 @@ from langchain.embeddings.openai import OpenAIEmbeddings
|
|
3 |
from langchain.vectorstores import Qdrant
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.chains import ConversationalRetrievalChain
|
6 |
-
from langchain.llms import OpenAI
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from qdrant_client import QdrantClient
|
9 |
from qdrant_client.http import models as qdrant_models
|
10 |
import os
|
11 |
from langchain.document_loaders import PyPDFLoader
|
12 |
import gradio as gr
|
|
|
13 |
|
|
|
14 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
15 |
-
|
16 |
|
|
|
17 |
pdf_folder_path = "files"
|
18 |
-
|
19 |
documents = []
|
20 |
for filename in os.listdir(pdf_folder_path):
|
21 |
if filename.endswith(".pdf"):
|
@@ -23,24 +24,25 @@ for filename in os.listdir(pdf_folder_path):
|
|
23 |
loader = PyPDFLoader(file_path)
|
24 |
documents.extend(loader.load())
|
25 |
|
|
|
26 |
text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=25)
|
27 |
docs = text_splitter.split_documents(documents)
|
28 |
|
|
|
29 |
embeddings = OpenAIEmbeddings()
|
30 |
-
|
31 |
qdrant_client = QdrantClient(":memory:")
|
32 |
|
|
|
33 |
qdrant_client.recreate_collection(
|
34 |
collection_name="langchain_collection",
|
35 |
vectors_config=qdrant_models.VectorParams(size=1536, distance=qdrant_models.Distance.COSINE)
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
|
41 |
|
42 |
-
|
43 |
-
vector_store =
|
44 |
docs,
|
45 |
embedding=embeddings,
|
46 |
sparse_embedding=sparse_embeddings,
|
@@ -48,32 +50,33 @@ vector_store = QdrantVectorStore.from_documents(
|
|
48 |
collection_name="langchain_collection",
|
49 |
retrieval_mode=RetrievalMode.HYBRID,
|
50 |
)
|
|
|
|
|
51 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3)
|
|
|
|
|
56 |
conversational_chain = ConversationalRetrievalChain.from_llm(
|
57 |
llm=llm,
|
58 |
retriever=retriever,
|
59 |
-
memory=memory
|
|
|
60 |
)
|
61 |
|
62 |
-
query = "What is COMVIVA CDR"
|
63 |
-
response = conversational_chain.invoke({"question": query})
|
64 |
-
print(response['answer'])
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
def chat_with_ai(user_input, chat_history):
|
70 |
-
response = conversational_chain
|
71 |
-
|
72 |
-
chat_history.append((user_input,
|
73 |
|
74 |
return chat_history, ""
|
75 |
|
76 |
-
|
77 |
def gradio_chatbot():
|
78 |
with gr.Blocks() as demo:
|
79 |
gr.Markdown("# Chat Interface for Langchain")
|
@@ -87,10 +90,11 @@ def gradio_chatbot():
|
|
87 |
|
88 |
chat_history = gr.State([])
|
89 |
|
|
|
90 |
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
91 |
-
|
92 |
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
93 |
|
94 |
return demo
|
95 |
|
|
|
96 |
gradio_chatbot().launch(debug=True)
|
|
|
3 |
from langchain.vectorstores import Qdrant
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
6 |
from langchain.memory import ConversationBufferMemory
|
7 |
from qdrant_client import QdrantClient
|
8 |
from qdrant_client.http import models as qdrant_models
|
9 |
import os
|
10 |
from langchain.document_loaders import PyPDFLoader
|
11 |
import gradio as gr
|
12 |
+
from langchain_qdrant import QdrantVectorStore, FastEmbedSparse, RetrievalMode
|
13 |
|
14 |
+
# Set OpenAI API Key
|
15 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
16 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
17 |
|
18 |
+
# Load PDF documents
|
19 |
pdf_folder_path = "files"
|
|
|
20 |
documents = []
|
21 |
for filename in os.listdir(pdf_folder_path):
|
22 |
if filename.endswith(".pdf"):
|
|
|
24 |
loader = PyPDFLoader(file_path)
|
25 |
documents.extend(loader.load())
|
26 |
|
27 |
+
# Split the documents into manageable chunks
|
28 |
text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=25)
|
29 |
docs = text_splitter.split_documents(documents)
|
30 |
|
31 |
+
# Initialize embeddings and Qdrant client
|
32 |
embeddings = OpenAIEmbeddings()
|
|
|
33 |
qdrant_client = QdrantClient(":memory:")
|
34 |
|
35 |
+
# Recreate Qdrant collection
|
36 |
qdrant_client.recreate_collection(
|
37 |
collection_name="langchain_collection",
|
38 |
vectors_config=qdrant_models.VectorParams(size=1536, distance=qdrant_models.Distance.COSINE)
|
39 |
)
|
40 |
|
41 |
+
# Set up the sparse embeddings for hybrid retrieval
|
|
|
42 |
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
|
43 |
|
44 |
+
# Initialize the vector store with hybrid retrieval mode
|
45 |
+
vector_store = QdrantVectorStore.from_documents(
|
46 |
docs,
|
47 |
embedding=embeddings,
|
48 |
sparse_embedding=sparse_embeddings,
|
|
|
50 |
collection_name="langchain_collection",
|
51 |
retrieval_mode=RetrievalMode.HYBRID,
|
52 |
)
|
53 |
+
|
54 |
+
# Set up conversational memory
|
55 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
56 |
|
57 |
+
# Set up the retriever
|
58 |
+
retriever = vector_store.as_retriever(search_type="hybrid", search_kwargs={"k": 3})
|
59 |
+
|
60 |
+
# Set up the language model
|
61 |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3)
|
62 |
+
|
63 |
+
# Set up the conversational retrieval chain with memory
|
64 |
conversational_chain = ConversationalRetrievalChain.from_llm(
|
65 |
llm=llm,
|
66 |
retriever=retriever,
|
67 |
+
memory=memory,
|
68 |
+
verbose=True
|
69 |
)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def chat_with_ai(user_input, chat_history):
|
73 |
+
response = conversational_chain({"question": user_input})
|
74 |
+
|
75 |
+
chat_history.append((user_input, response['answer']))
|
76 |
|
77 |
return chat_history, ""
|
78 |
|
79 |
+
# Gradio interface
|
80 |
def gradio_chatbot():
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown("# Chat Interface for Langchain")
|
|
|
90 |
|
91 |
chat_history = gr.State([])
|
92 |
|
93 |
+
# Bind button and textbox to chat function
|
94 |
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
|
|
95 |
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
96 |
|
97 |
return demo
|
98 |
|
99 |
+
# Launch Gradio interface
|
100 |
gradio_chatbot().launch(debug=True)
|