Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import RetrievalQA
|
2 |
+
from langchain.chat_models import ChatOpenAI
|
3 |
+
from IPython.display import display, Markdown
|
4 |
+
from langchain.llms import OpenAI
|
5 |
+
from langchain.memory import ConversationBufferMemory
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.indexes import VectorstoreIndexCreator
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
from langchain.embeddings import OpenAIEmbeddings
|
11 |
+
from langchain_core.vectorstores import InMemoryVectorStore
|
12 |
+
from langchain.vectorstores import FAISS
|
13 |
+
from langchain.retrievers import BM25Retriever,EnsembleRetriever
|
14 |
+
from langchain_core.prompts import ChatPromptTemplate
|
15 |
+
from langchain_core.output_parsers import StrOutputParser
|
16 |
+
from langchain.schema.runnable import RunnablePassthrough
|
17 |
+
import gradio as gr
|
18 |
+
import os
|
19 |
+
|
20 |
+
pdf_folder_path = "files"
|
21 |
+
|
22 |
+
documents = []
|
23 |
+
for filename in os.listdir(pdf_folder_path):
|
24 |
+
if filename.endswith(".pdf"):
|
25 |
+
file_path = os.path.join(pdf_folder_path, filename)
|
26 |
+
loader = PyPDFLoader(file_path)
|
27 |
+
documents.extend(loader.load())
|
28 |
+
|
29 |
+
text_splitter = CharacterTextSplitter()
|
30 |
+
text_splits=text_splitter.split_documents(documents)
|
31 |
+
|
32 |
+
|
33 |
+
openai_api_key = os.genenv("OPENAI_API_KEY")
|
34 |
+
openai_api_key = openai_api_key
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
embeddings = OpenAIEmbeddings()
|
39 |
+
|
40 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
41 |
+
|
42 |
+
retriever_vectordb = vector_store.as_retriever(search_kwargs={"k": 5})
|
43 |
+
keyword_retriever = BM25Retriever.from_documents(text_splits)
|
44 |
+
keyword_retriever.k = 5
|
45 |
+
ensemble_retriever = EnsembleRetriever(retrievers=[retriever_vectordb,keyword_retriever],
|
46 |
+
weights=[0.5, 0.5])
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.4, api_key=adminkey)
|
51 |
+
|
52 |
+
memory = ConversationBufferMemory(
|
53 |
+
memory_key="chat_history",
|
54 |
+
input_key="question" ,
|
55 |
+
return_messages=True
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
60 |
+
retriever=ensemble_retriever,
|
61 |
+
llm=llm,
|
62 |
+
memory=memory,
|
63 |
+
verbose=False
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
template = """
|
68 |
+
<|system|>>
|
69 |
+
You are an AI Assistant that follows instructions extremely well.
|
70 |
+
Please be truthful and give direct answers. Please tell 'I don't know' if user query is not in CONTEXT
|
71 |
+
|
72 |
+
CONTEXT: {context}
|
73 |
+
</s>
|
74 |
+
<|user|>
|
75 |
+
{query}
|
76 |
+
</s>
|
77 |
+
<|assistant|>
|
78 |
+
"""
|
79 |
+
|
80 |
+
prompt = ChatPromptTemplate.from_template(template)
|
81 |
+
output_parser = StrOutputParser()
|
82 |
+
|
83 |
+
chain = (
|
84 |
+
{"context": conversation_chain, "query": RunnablePassthrough()}
|
85 |
+
| prompt
|
86 |
+
| llm
|
87 |
+
| output_parser
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def chat_with_ai(user_input, chat_history):
|
93 |
+
response = chain.invoke(user_input)
|
94 |
+
|
95 |
+
chat_history.append((user_input, str(response)))
|
96 |
+
|
97 |
+
return chat_history, ""
|
98 |
+
|
99 |
+
|
100 |
+
def gradio_chatbot():
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("# Chat Interface for LlamaIndex")
|
103 |
+
|
104 |
+
chatbot = gr.Chatbot(label="Langchain Chatbot")
|
105 |
+
user_input = gr.Textbox(
|
106 |
+
placeholder="Ask a question...", label="Enter your question"
|
107 |
+
)
|
108 |
+
|
109 |
+
submit_button = gr.Button("Send")
|
110 |
+
|
111 |
+
chat_history = gr.State([])
|
112 |
+
|
113 |
+
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
114 |
+
|
115 |
+
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
116 |
+
|
117 |
+
return demo
|
118 |
+
|
119 |
+
gradio_chatbot().launch(debug=True)
|