Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,11 +12,9 @@ from langchain.document_loaders import PyPDFLoader
|
|
12 |
import gradio as gr
|
13 |
from langchain_qdrant import QdrantVectorStore, FastEmbedSparse, RetrievalMode
|
14 |
|
15 |
-
# Set OpenAI API Key
|
16 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
17 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
18 |
|
19 |
-
# Load PDF documents
|
20 |
pdf_folder_path = "files"
|
21 |
documents = []
|
22 |
for filename in os.listdir(pdf_folder_path):
|
@@ -25,24 +23,19 @@ for filename in os.listdir(pdf_folder_path):
|
|
25 |
loader = PyPDFLoader(file_path)
|
26 |
documents.extend(loader.load())
|
27 |
|
28 |
-
# Split the documents into manageable chunks
|
29 |
text_splitter = CharacterTextSplitter(chunk_size=128, chunk_overlap=5)
|
30 |
docs = text_splitter.split_documents(documents)
|
31 |
|
32 |
-
# Initialize embeddings and Qdrant client
|
33 |
embeddings = OpenAIEmbeddings()
|
34 |
qdrant_client = QdrantClient(":memory:")
|
35 |
|
36 |
-
# Recreate Qdrant collection
|
37 |
qdrant_client.create_collection(
|
38 |
collection_name="langchain_collection",
|
39 |
vectors_config=qdrant_models.VectorParams(size=3000, distance=qdrant_models.Distance.COSINE)
|
40 |
)
|
41 |
|
42 |
-
# Set up the sparse embeddings for hybrid retrieval
|
43 |
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
|
44 |
|
45 |
-
# Initialize the vector store with hybrid retrieval mode
|
46 |
vector_store = QdrantVectorStore.from_documents(
|
47 |
docs,
|
48 |
embedding=embeddings,
|
@@ -52,10 +45,8 @@ vector_store = QdrantVectorStore.from_documents(
|
|
52 |
retrieval_mode=RetrievalMode.HYBRID,
|
53 |
)
|
54 |
|
55 |
-
# Set up conversational memory
|
56 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
57 |
|
58 |
-
# Set up the retriever
|
59 |
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
60 |
|
61 |
keyword_retriever = BM25Retriever.from_documents(docs)
|
@@ -65,10 +56,9 @@ ensemble_retriever = EnsembleRetriever(retrievers=[retriever,keyword_retriever],
|
|
65 |
|
66 |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3)
|
67 |
|
68 |
-
# Set up the conversational retrieval chain with memory
|
69 |
conversational_chain = ConversationalRetrievalChain.from_llm(
|
70 |
llm=llm,
|
71 |
-
retriever=
|
72 |
memory=memory,
|
73 |
verbose=True
|
74 |
)
|
@@ -81,7 +71,6 @@ def chat_with_ai(user_input, chat_history):
|
|
81 |
|
82 |
return chat_history, ""
|
83 |
|
84 |
-
# Gradio interface
|
85 |
def gradio_chatbot():
|
86 |
with gr.Blocks() as demo:
|
87 |
gr.Markdown("# Chat Interface for Langchain")
|
@@ -95,11 +84,9 @@ def gradio_chatbot():
|
|
95 |
|
96 |
chat_history = gr.State([])
|
97 |
|
98 |
-
# Bind button and textbox to chat function
|
99 |
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
100 |
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
101 |
|
102 |
return demo
|
103 |
|
104 |
-
|
105 |
-
gradio_chatbot().launch(debug=True)
|
|
|
12 |
import gradio as gr
|
13 |
from langchain_qdrant import QdrantVectorStore, FastEmbedSparse, RetrievalMode
|
14 |
|
|
|
15 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
16 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
17 |
|
|
|
18 |
pdf_folder_path = "files"
|
19 |
documents = []
|
20 |
for filename in os.listdir(pdf_folder_path):
|
|
|
23 |
loader = PyPDFLoader(file_path)
|
24 |
documents.extend(loader.load())
|
25 |
|
|
|
26 |
text_splitter = CharacterTextSplitter(chunk_size=128, chunk_overlap=5)
|
27 |
docs = text_splitter.split_documents(documents)
|
28 |
|
|
|
29 |
embeddings = OpenAIEmbeddings()
|
30 |
qdrant_client = QdrantClient(":memory:")
|
31 |
|
|
|
32 |
qdrant_client.create_collection(
|
33 |
collection_name="langchain_collection",
|
34 |
vectors_config=qdrant_models.VectorParams(size=3000, distance=qdrant_models.Distance.COSINE)
|
35 |
)
|
36 |
|
|
|
37 |
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
|
38 |
|
|
|
39 |
vector_store = QdrantVectorStore.from_documents(
|
40 |
docs,
|
41 |
embedding=embeddings,
|
|
|
45 |
retrieval_mode=RetrievalMode.HYBRID,
|
46 |
)
|
47 |
|
|
|
48 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
49 |
|
|
|
50 |
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
51 |
|
52 |
keyword_retriever = BM25Retriever.from_documents(docs)
|
|
|
56 |
|
57 |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3)
|
58 |
|
|
|
59 |
conversational_chain = ConversationalRetrievalChain.from_llm(
|
60 |
llm=llm,
|
61 |
+
retriever=keyword_retriever,
|
62 |
memory=memory,
|
63 |
verbose=True
|
64 |
)
|
|
|
71 |
|
72 |
return chat_history, ""
|
73 |
|
|
|
74 |
def gradio_chatbot():
|
75 |
with gr.Blocks() as demo:
|
76 |
gr.Markdown("# Chat Interface for Langchain")
|
|
|
84 |
|
85 |
chat_history = gr.State([])
|
86 |
|
|
|
87 |
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
88 |
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
|
89 |
|
90 |
return demo
|
91 |
|
92 |
+
gradio_chatbot().launch(debug=True)
|
|