Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,19 @@
|
|
1 |
-
from langchain.chains import RetrievalQA
|
2 |
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
|
|
|
|
3 |
from langchain.llms import OpenAI
|
4 |
from langchain.memory import ConversationBufferMemory
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from langchain.indexes import VectorstoreIndexCreator
|
8 |
-
from langchain.document_loaders import PyPDFLoader
|
9 |
-
from langchain.embeddings import OpenAIEmbeddings
|
10 |
-
from langchain_core.vectorstores import InMemoryVectorStore
|
11 |
-
from langchain.vectorstores import FAISS
|
12 |
-
from langchain.retrievers import BM25Retriever,EnsembleRetriever
|
13 |
-
from langchain_core.prompts import ChatPromptTemplate
|
14 |
-
from langchain_core.output_parsers import StrOutputParser
|
15 |
-
from langchain.schema.runnable import RunnablePassthrough
|
16 |
-
import gradio as gr
|
17 |
import os
|
|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
documents = []
|
22 |
for filename in os.listdir(pdf_folder_path):
|
@@ -25,69 +22,51 @@ for filename in os.listdir(pdf_folder_path):
|
|
25 |
loader = PyPDFLoader(file_path)
|
26 |
documents.extend(loader.load())
|
27 |
|
28 |
-
text_splitter = CharacterTextSplitter()
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
openai_api_key = os.getenv('OPENAI_API_KEY')
|
33 |
-
openai_api_key = openai_api_key
|
34 |
|
35 |
embeddings = OpenAIEmbeddings()
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
weights=[0.5, 0.5])
|
44 |
|
|
|
45 |
|
|
|
46 |
|
47 |
-
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.4, api_key=openai_api_key)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
)
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
llm=llm,
|
59 |
-
|
60 |
-
|
61 |
)
|
62 |
|
|
|
|
|
|
|
63 |
|
64 |
-
template = """
|
65 |
-
<|system|>>
|
66 |
-
You are an AI Assistant that follows instructions extremely well.
|
67 |
-
Please be truthful and give direct answers. Please tell 'I don't know' if user query is not in CONTEXT
|
68 |
-
|
69 |
-
CONTEXT: {context}
|
70 |
-
</s>
|
71 |
-
<|user|>
|
72 |
-
{query}
|
73 |
-
</s>
|
74 |
-
<|assistant|>
|
75 |
-
"""
|
76 |
-
|
77 |
-
prompt = ChatPromptTemplate.from_template(template)
|
78 |
-
output_parser = StrOutputParser()
|
79 |
-
|
80 |
-
chain = (
|
81 |
-
{"context": conversation_chain, "query": RunnablePassthrough()}
|
82 |
-
| prompt
|
83 |
-
| llm
|
84 |
-
| output_parser
|
85 |
-
)
|
86 |
|
87 |
|
88 |
|
89 |
def chat_with_ai(user_input, chat_history):
|
90 |
-
response =
|
91 |
|
92 |
chat_history.append((user_input, str(response)))
|
93 |
|
|
|
|
|
1 |
from langchain.chat_models import ChatOpenAI
|
2 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
3 |
+
from langchain.vectorstores import Qdrant
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.chains import ConversationalRetrievalChain
|
6 |
from langchain.llms import OpenAI
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
+
from qdrant_client import QdrantClient
|
9 |
+
from qdrant_client.http import models as qdrant_models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import os
|
11 |
+
from langchain.document_loaders import PyPDFLoader
|
12 |
|
13 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
14 |
+
openai_api_key = openai_api_key
|
15 |
+
|
16 |
+
pdf_folder_path = "/content/new_files"
|
17 |
|
18 |
documents = []
|
19 |
for filename in os.listdir(pdf_folder_path):
|
|
|
22 |
loader = PyPDFLoader(file_path)
|
23 |
documents.extend(loader.load())
|
24 |
|
25 |
+
text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=25)
|
26 |
+
docs = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
|
|
27 |
|
28 |
embeddings = OpenAIEmbeddings()
|
29 |
|
30 |
+
qdrant_client = QdrantClient(":memory:")
|
31 |
|
32 |
+
qdrant_client.recreate_collection(
|
33 |
+
collection_name="langchain_collection",
|
34 |
+
vectors_config=qdrant_models.VectorParams(size=1536, distance=qdrant_models.Distance.COSINE)
|
35 |
+
)
|
|
|
36 |
|
37 |
+
from langchain_qdrant import QdrantVectorStore,FastEmbedSparse,RetrievalMode
|
38 |
|
39 |
+
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
|
40 |
|
|
|
41 |
|
42 |
+
vector_store = QdrantVectorStore.from_documents(
|
43 |
+
docs,
|
44 |
+
embedding=embeddings,
|
45 |
+
sparse_embedding=sparse_embeddings,
|
46 |
+
location=":memory:",
|
47 |
+
collection_name="langchain_collection",
|
48 |
+
retrieval_mode=RetrievalMode.HYBRID,
|
49 |
)
|
50 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
51 |
|
52 |
+
retriever = vector_store.as_retriever()
|
53 |
+
# llm = OpenAI(temperature=0.4)
|
54 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3)
|
55 |
+
conversational_chain = ConversationalRetrievalChain.from_llm(
|
56 |
llm=llm,
|
57 |
+
retriever=retriever,
|
58 |
+
memory=memory
|
59 |
)
|
60 |
|
61 |
+
query = "What is COMVIVA CDR"
|
62 |
+
response = conversational_chain.invoke({"question": query})
|
63 |
+
print(response['answer'])
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
|
68 |
def chat_with_ai(user_input, chat_history):
|
69 |
+
response = conversational_chain.invoke({"question":user_input})
|
70 |
|
71 |
chat_history.append((user_input, str(response)))
|
72 |
|