Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("sagard21/python-code-explainer")
|
6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("sagard21/python-code-explainer")
|
7 |
+
|
8 |
+
def explain_code(python_code):
|
9 |
+
# Tokenize the input code
|
10 |
+
inputs = tokenizer(python_code, return_tensors="pt", truncation=True, max_length=512)
|
11 |
+
|
12 |
+
# Generate explanation
|
13 |
+
explanation_ids = model.generate(
|
14 |
+
inputs["input_ids"],
|
15 |
+
max_length=256,
|
16 |
+
num_beams=5,
|
17 |
+
early_stopping=True
|
18 |
+
)
|
19 |
+
|
20 |
+
# Decode and return the explanation
|
21 |
+
explanation = tokenizer.decode(explanation_ids[0], skip_special_tokens=True)
|
22 |
+
return explanation
|
23 |
+
|
24 |
+
# Create the Gradio interface
|
25 |
+
demo = gr.Interface(
|
26 |
+
fn=explain_code,
|
27 |
+
inputs=gr.Code(
|
28 |
+
language="python",
|
29 |
+
label="Enter Python Code",
|
30 |
+
lines=10,
|
31 |
+
placeholder="def hello_world():\n print('Hello, world!')"
|
32 |
+
),
|
33 |
+
outputs=gr.Textbox(
|
34 |
+
label="Code Explanation",
|
35 |
+
lines=5
|
36 |
+
),
|
37 |
+
title="Python Code Explainer",
|
38 |
+
description="π Enter Python code and get a natural language explanation of what it does.",
|
39 |
+
examples=[
|
40 |
+
["def add(a, b):\n return a + b"],
|
41 |
+
["for i in range(5):\n print(i)"],
|
42 |
+
["x = [i**2 for i in range(10) if i % 2 == 0]"]
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the app
|
47 |
+
demo.launch()
|