import streamlit as st import torch from PIL import Image from models import IndividualLandmarkViT from utils import VisualizeAttentionMaps from utils.data_utils.transform_utils import make_test_transforms st.title("Pdiscoformer Part Discovery Visualizer for CUB-200-2011/birds (K=8)") # Set the device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model model = IndividualLandmarkViT.from_pretrained("ananthu-aniraj/pdiscoformer_cub_k_8").eval().to(device) amap_vis = VisualizeAttentionMaps(num_parts=9, bg_label=8) image_size = 518 test_transforms = make_test_transforms(image_size) image_name = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) # Upload an image if image_name is not None: image = Image.open(image_name).convert("RGB") image_tensor = test_transforms(image).unsqueeze(0).to(device) with torch.no_grad(): maps, scores = model(image_tensor) coloured_map = amap_vis.show_maps(image_tensor, maps) st.image(coloured_map, caption="Attention Map", use_column_width=True)