Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from PIL import Image | |
from models import IndividualLandmarkViT | |
from utils import VisualizeAttentionMaps | |
from utils.data_utils.transform_utils import make_test_transforms | |
st.title("Pdiscoformer Part Discovery Visualizer") | |
# Set the device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the model | |
model = IndividualLandmarkViT.from_pretrained("ananthu-aniraj/pdiscoformer_cub_k_8").eval().to(device) | |
amap_vis = VisualizeAttentionMaps(num_parts=9, bg_label=8) | |
image_size = 518 | |
test_transforms = make_test_transforms(image_size) | |
image_name = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) # Upload an image | |
if image_name is not None: | |
image = Image.open(image_name).convert("RGB") | |
image_tensor = test_transforms(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
maps, scores = model(image_tensor) | |
coloured_map = amap_vis.show_maps(image_tensor, maps) | |
st.image(coloured_map, caption="Attention Map", use_column_width=True) | |