pdiscoformer / app.py
ananthu-aniraj's picture
add extra instructions
083cd0d
raw
history blame
2.67 kB
import streamlit as st
import torch
from PIL import Image
from models import IndividualLandmarkViT
from utils import VisualizeAttentionMaps
from utils.transform_utils import make_test_transforms
st.title("PdiscoFormer Part Discovery Visualizer")
model_options = ["ananthu-aniraj/pdiscoformer_cub_k_8", "ananthu-aniraj/pdiscoformer_cub_k_16",
"ananthu-aniraj/pdiscoformer_cub_k_4", "ananthu-aniraj/pdiscoformer_part_imagenet_ood_k_8",
"ananthu-aniraj/pdiscoformer_part_imagenet_ood_k_25",
"ananthu-aniraj/pdiscoformer_part_imagenet_ood_k_50",
"ananthu-aniraj/pdiscoformer_flowers_k_2", "ananthu-aniraj/pdiscoformer_flowers_k_4",
"ananthu-aniraj/pdiscoformer_flowers_k_8", "ananthu-aniraj/pdiscoformer_nabirds_k_4",
"ananthu-aniraj/pdiscoformer_nabirds_k_8", "ananthu-aniraj/pdiscoformer_nabirds_k_11",
"ananthu-aniraj/pdiscoformer_pimagenet_seg_k_8", "ananthu-aniraj/pdiscoformer_pimagenet_seg_k_16",
"ananthu-aniraj/pdiscoformer_pimagenet_seg_k_25", "ananthu-aniraj/pdiscoformer_pimagenet_seg_k_41",
"ananthu-aniraj/pdiscoformer_pimagenet_seg_k_50"]
model_name = st.selectbox("Select a model", model_options)
if model_name is not None:
if "cub" in model_name or "nabirds" in model_name:
image_size = 518
else:
image_size = 224
# Set the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
model = IndividualLandmarkViT.from_pretrained(model_name, input_size=image_size).eval().to(device)
num_parts = model.num_landmarks
amap_vis = VisualizeAttentionMaps(num_parts=num_parts + 1, bg_label=num_parts)
test_transforms = make_test_transforms(image_size)
# Instructions
if "cub" or "nabirds" in model_name:
st.write("Upload an image of a bird to visualize the attention maps")
elif "flowers" in model_name:
st.write("Upload an image of a flower to visualize the attention maps")
else:
st.write("Upload an image of any PartImageNet class (land animals + fish + cars + airplanes) to visualize the attention maps")
image_name = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) # Upload an image
if image_name is not None:
image = Image.open(image_name).convert("RGB")
image_tensor = test_transforms(image).unsqueeze(0).to(device)
with torch.no_grad():
maps, scores = model(image_tensor)
coloured_map = amap_vis.show_maps(image_tensor, maps)
st.image(coloured_map, caption="Attention Map", use_column_width=True)