File size: 8,696 Bytes
20239f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Compostion of the VisionTransformer class from timm with extra features: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
import torch
import torch.nn as nn
from typing import Tuple, Union, Sequence, Any
from timm.layers import trunc_normal_
from timm.models.vision_transformer import Block, Attention
from layers.transformer_layers import BlockWQKVReturn, AttentionWQKVReturn

from utils.misc_utils import compute_attention


class BaselineViT(torch.nn.Module):
    """
    Modifications:
    - Use PDiscoBlock instead of Block
    - Use PDiscoAttention instead of Attention
    - Return the mean of k over heads from attention
    - Option to use only class tokens or only patch tokens or both (concat) for classification
    """

    def __init__(self, init_model: torch.nn.Module, num_classes: int,
                 class_tokens_only: bool = False,
                 patch_tokens_only: bool = False, return_transformer_qkv: bool = False) -> None:
        super().__init__()
        self.num_classes = num_classes
        self.class_tokens_only = class_tokens_only
        self.patch_tokens_only = patch_tokens_only
        self.num_prefix_tokens = init_model.num_prefix_tokens
        self.num_reg_tokens = init_model.num_reg_tokens
        self.has_class_token = init_model.has_class_token
        self.no_embed_class = init_model.no_embed_class
        self.cls_token = init_model.cls_token
        self.reg_token = init_model.reg_token

        self.patch_embed = init_model.patch_embed

        self.pos_embed = init_model.pos_embed
        self.pos_drop = init_model.pos_drop
        self.part_embed = nn.Identity()
        self.patch_prune = nn.Identity()
        self.norm_pre = init_model.norm_pre
        self.blocks = init_model.blocks
        self.norm = init_model.norm

        self.fc_norm = init_model.fc_norm
        if class_tokens_only or patch_tokens_only:
            self.head = nn.Linear(init_model.embed_dim, num_classes)
        else:
            self.head = nn.Linear(init_model.embed_dim * 2, num_classes)

        self.h_fmap = int(self.patch_embed.img_size[0] // self.patch_embed.patch_size[0])
        self.w_fmap = int(self.patch_embed.img_size[1] // self.patch_embed.patch_size[1])

        self.return_transformer_qkv = return_transformer_qkv
        self.convert_blocks_and_attention()
        self._init_weights_head()

    def convert_blocks_and_attention(self):
        for module in self.modules():
            if isinstance(module, Block):
                module.__class__ = BlockWQKVReturn
            elif isinstance(module, Attention):
                module.__class__ = AttentionWQKVReturn

    def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
        pos_embed = self.pos_embed
        to_cat = []
        if self.cls_token is not None:
            to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
        if self.reg_token is not None:
            to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + pos_embed
            if to_cat:
                x = torch.cat(to_cat + [x], dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if to_cat:
                x = torch.cat(to_cat + [x], dim=1)
            x = x + pos_embed
        return self.pos_drop(x)

    def _init_weights_head(self):
        trunc_normal_(self.head.weight, std=.02)
        if self.head.bias is not None:
            nn.init.constant_(self.head.bias, 0.)

    def forward(self, x: torch.Tensor) -> torch.Tensor | Tuple[torch.Tensor, torch.Tensor]:

        x = self.patch_embed(x)

        # Position Embedding
        x = self._pos_embed(x)

        x = self.part_embed(x)
        x = self.patch_prune(x)

        # Forward pass through transformer
        x = self.norm_pre(x)

        if self.return_transformer_qkv:
            # Return keys of last attention layer
            for i, blk in enumerate(self.blocks):
                x, qkv = blk(x, return_qkv=True)
        else:
            x = self.blocks(x)

        x = self.norm(x)

        # Classification head
        x = self.fc_norm(x)
        if self.class_tokens_only:  # only use class token
            x = x[:, 0, :]
        elif self.patch_tokens_only:  # only use patch tokens
            x = x[:, self.num_prefix_tokens:, :].mean(dim=1)
        else:
            x = torch.cat([x[:, 0, :], x[:, self.num_prefix_tokens:, :].mean(dim=1)], dim=1)
        x = self.head(x)
        if self.return_transformer_qkv:
            return x, qkv
        else:
            return x

    def get_specific_intermediate_layer(
            self,
            x: torch.Tensor,
            n: int = 1,
            return_qkv: bool = False,
            return_att_weights: bool = False,
    ):
        num_blocks = len(self.blocks)
        attn_weights = []
        if n >= num_blocks:
            raise ValueError(f"n must be less than {num_blocks}")

        # forward pass
        x = self.patch_embed(x)
        x = self._pos_embed(x)
        x = self.norm_pre(x)

        if n == -1:
            if return_qkv:
                raise ValueError("take_indice cannot be -1 if return_transformer_qkv is True")
            else:
                return x

        for i, blk in enumerate(self.blocks):
            if self.return_transformer_qkv:
                x, qkv = blk(x, return_qkv=True)

                if return_att_weights:
                    attn_weight, _ = compute_attention(qkv)
                    attn_weights.append(attn_weight.detach())
            else:
                x = blk(x)
            if i == n:
                output = x.clone()
                if self.return_transformer_qkv and return_qkv:
                    qkv_output = qkv.clone()
                break
        if self.return_transformer_qkv and return_qkv and return_att_weights:
            return output, qkv_output, attn_weights
        elif self.return_transformer_qkv and return_qkv:
            return output, qkv_output
        elif self.return_transformer_qkv and return_att_weights:
            return output, attn_weights
        else:
            return output

    def _intermediate_layers(
            self,
            x: torch.Tensor,
            n: Union[int, Sequence] = 1,
    ):
        outputs, num_blocks = [], len(self.blocks)
        if self.return_transformer_qkv:
            qkv_outputs = []
        take_indices = set(range(num_blocks - n, num_blocks) if isinstance(n, int) else n)

        # forward pass
        x = self.patch_embed(x)
        x = self._pos_embed(x)
        x = self.norm_pre(x)

        for i, blk in enumerate(self.blocks):
            if self.return_transformer_qkv:
                x, qkv = blk(x, return_qkv=True)
            else:
                x = blk(x)
            if i in take_indices:
                outputs.append(x)
                if self.return_transformer_qkv:
                    qkv_outputs.append(qkv)
        if self.return_transformer_qkv:
            return outputs, qkv_outputs
        else:
            return outputs

    def get_intermediate_layers(
            self,
            x: torch.Tensor,
            n: Union[int, Sequence] = 1,
            reshape: bool = False,
            return_prefix_tokens: bool = False,
            norm: bool = False,
    ) -> tuple[tuple, Any]:
        """ Intermediate layer accessor (NOTE: This is a WIP experiment).
        Inspired by DINO / DINOv2 interface
        """
        # take last n blocks if n is an int, if in is a sequence, select by matching indices
        if self.return_transformer_qkv:
            outputs, qkv = self._intermediate_layers(x, n)
        else:
            outputs = self._intermediate_layers(x, n)

        if norm:
            outputs = [self.norm(out) for out in outputs]
        prefix_tokens = [out[:, 0:self.num_prefix_tokens] for out in outputs]
        outputs = [out[:, self.num_prefix_tokens:] for out in outputs]

        if reshape:
            grid_size = self.patch_embed.grid_size
            outputs = [
                out.reshape(x.shape[0], grid_size[0], grid_size[1], -1).permute(0, 3, 1, 2).contiguous()
                for out in outputs
            ]

        if return_prefix_tokens:
            return_out = tuple(zip(outputs, prefix_tokens))
        else:
            return_out = tuple(outputs)

        if self.return_transformer_qkv:
            return return_out, qkv
        else:
            return return_out