File size: 4,374 Bytes
f777e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885f3a9
f777e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1f775d
f777e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64391fc
f777e0b
 
 
 
 
 
 
 
 
 
 
64391fc
f777e0b
 
ae8abfa
f777e0b
 
 
 
 
 
ae8abfa
 
f777e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64391fc
f2dabd3
f777e0b
892b4eb
f777e0b
892b4eb
f777e0b
892b4eb
 
 
49bc884
892b4eb
49bc884
f777e0b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
"""Untitled32.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1fKN0jOoDSOaUCMAAoxNUnSUd-HPcRXNZ
"""
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from lightgbm import LGBMClassifier
from sklearn.model_selection import train_test_split

import streamlit as st
import pandas as pd

import numpy as np

data = pd.read_csv('archive (8).zip')
data.head()

to_use_cols = ['as_of_year', 'county_name', 'applicant_sex_name', 'action_taken_name', 'loan_amount_000s', 'applicant_income_000s', 'state_name', 'property_type_name', 'loan_type_name']

data_reduced = data[to_use_cols]

data_no_na = data_reduced.dropna()


succeeded = ['Loan originated', 'Loan purchased by the institution', ]
failed = ['Application approved but not accepted', 'Preapproval request denied by financial institution', 'Application denied by financial institution', 'Preapproval request approved but not accepted']
user_error = ['File closed for incompleteness', 'Application withdrawn by applicant', ]

mapped = {tuple(succeeded): 1, tuple(failed): 2, tuple(user_error): 3}

def mapped(x):
  if x in succeeded:
    return 1
  else:
    return 0

data_no_na.action_taken_name = data_no_na.action_taken_name.apply(mapped)


mapped_type = {
    'Conventional': 0,
    'FHA-insured': 1,
    'VA-guaranteed':2,
    'FSA/RHS-guaranteed':3
}

data_no_na.loan_type_name.apply(lambda x: mapped_type[x])

data_no_na['loan_encoded'] = data_no_na.loan_type_name.apply(lambda x: mapped_type[x])

data_no_na.property_type_name.value_counts()

data_no_na['property_encoded'] = data_no_na.property_type_name.apply(lambda x: 1 if x == 'Manufactured housing' else 0)

data_no_na.state_name.value_counts()

data_no_na.county_name.value_counts()


code = {}
i = 0
for county in data_no_na.county_name.unique():
  code[county] = i
  i += 1

data_no_na['county_code']= data_no_na.county_name.map(code)

data_no_na.head(2)

data_no_na['sex_encoded'] = data_no_na.applicant_sex_name.apply(lambda x: 1 if x == 'Male' else 0)

data_no_na.head(2)

cols = ['county_code', 'sex_encoded', 'property_encoded', 'loan_encoded', 'applicant_income_000s', 'loan_amount_000s', 'action_taken_name']

train = data_no_na[cols]

X_train, X_test, y_train,  y_test = train_test_split(train.drop('action_taken_name', axis=1), train.action_taken_name, test_size=0.3, random_state=42)


gbm = LGBMClassifier(n_estimators=200)
random = RandomForestClassifier(n_estimators=200)
tree = DecisionTreeClassifier()

gbm.fit(X_train, y_train)
random.fit(X_train, y_train)
tree.fit(X_train, y_train)

def mapping(**kwargs):
  kwargs['county'] = code[kwargs['county']]
  kwargs['sex'] = 1 if kwargs['sex'] == 'Male' else 0
  kwargs['property_type'] =  1 if kwargs['property_type'] == 'Manufactured housing' else 0
  kwargs['loan'] = mapped_type[kwargs['loan']]
  kwargs['income'] = float(kwargs['income'])
  kwargs['loan_amount'] = float(kwargs['loan_amount'])
  return kwargs


st.title('Loan Approval for Washington House')
st.dataframe(data_no_na.head())


col1, col2 = st.columns([3, 1])
with col1:
  st.text('Please, fill this form')

  with st.form("my_form"):
    county = st.selectbox('County', data_no_na.county_name.unique().tolist())
    sex = st.selectbox('Sex', ['Male', 'Female'])
    property_type = st.selectbox('Property Type', data_no_na.property_type_name.unique().tolist())
    loan = st.selectbox('Loan Type', data_no_na.loan_type_name.unique().tolist())
    income = st.number_input('Your Yearly income (in 000$)')
    loan_amount = st.number_input('Loan Amount')

    model_choice = col2.selectbox('Choose model', ['RandomForest', 'Tree', 'LGBM'])
    # Every form must have a submit button.
    submitted = st.form_submit_button("Submit")
    if submitted:
        col2.info('Predicting')
        new_demand = np.array([list(mapping(county=county, sex=sex, property_type=property_type, loan=loan, income=income, loan_amount=loan_amount).values())])
        if model_choice == 'Tree':
          result = tree.predict(new_demand)
        elif model_choice == 'RandomForest':
          result = random.predict(new_demand)
        else:
          result = gbm.predict(new_demand)

        if result[0]:
            col2.success('Accepted')
        else:
            col2.error("Rejected")