File size: 3,525 Bytes
f385f69
 
 
9a55f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079ffd
9a55f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079ffd
9a55f2c
3079ffd
 
 
 
 
 
 
 
f385f69
3079ffd
 
 
 
 
f385f69
 
 
 
 
 
3079ffd
 
 
f385f69
9a55f2c
 
 
 
 
 
 
 
 
f385f69
9a55f2c
f385f69
9a55f2c
 
f385f69
 
 
9a55f2c
f385f69
9a55f2c
 
f385f69
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
from huggingface_hub import InferenceClient

# Define available models.
# Each model has a name, description, model ID, and an "enabled" flag.
models = [
    {
        "name": "Tiny Model",
        "description": "A small chat model.",
        "id": "amusktweewt/tiny-model-500M-chat-v2",
        "enabled": True
    },
    {
        "name": "Another Model",
        "description": "A bigger chat model (disabled).",
        "id": "another-model",
        "enabled": False
    }
]

# Build the HTML for the custom dropdown.
dropdown_options = ""
for model in models:
    # If a model is disabled, add the "disabled" attribute and modify its label.
    disabled_attr = "disabled" if not model["enabled"] else ""
    label = f"{model['name']}: {model['description']}"
    if not model["enabled"]:
        label = f"{model['name']} (Disabled): {model['description']}"
    dropdown_options += f'<option value="{model["id"]}" {disabled_attr}>{label}</option>\n'

# This HTML dropdown will be displayed. When the user selects an option,
# an inline JavaScript updates the value of the hidden textbox with the chosen model ID.
dropdown_html = f"""
<div>
  <label for="model_select"><strong>Select Model:</strong></label>
  <select id="model_select" onchange="document.getElementById('hidden_model').value = this.value;">
    {dropdown_options}
  </select>
</div>
"""

# The respond function now accepts the model_id as one of its inputs.
def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p):
    # Instantiate the InferenceClient with the selected model.
    client = InferenceClient(model_id)
    
    messages = []
    if system_message:
        messages.append({"role": "system", "content": system_message})
    
    if history:
        for user_msg, bot_msg in history:
            messages.append({"role": "user", "content": user_msg})
            messages.append({"role": "assistant", "content": bot_msg})
    
    messages.append({"role": "user", "content": message})
    messages.append({"role": "assistant", "content": ""})
    
    response_text = ""
    # Stream the response token-by-token.
    for resp in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = resp.choices[0].delta.content
        response_text += token
        yield response_text

# Create Gradio components.
# The HTML component displays our custom dropdown.
html_dropdown = gr.HTML(value=dropdown_html)
# The hidden textbox will hold the selected model ID.
hidden_model = gr.Textbox(value=models[0]["id"], visible=False, elem_id="hidden_model")

# Create the Gradio ChatInterface.
# Note: Only components that supply a value are passed to the function.
# The HTML component is for display only.
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        # hidden_model supplies the model_id.
        hidden_model,
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
    ],
    # You can include the HTML dropdown in a layout so that it is visible to the user.
    layout=[html_dropdown]
)

if __name__ == "__main__":
    demo.launch()