File size: 4,764 Bytes
3b07c2b 0587641 81fdfb6 0587641 3b07c2b 81fdfb6 0587641 81fdfb6 0587641 81fdfb6 0587641 81fdfb6 0587641 81fdfb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import whisper
import numpy as np
import openai
def greet(name):
return "Hello " + name + "!!"
with open('app.css','r') as f:
css_file = f.read()
markdown="""
# Polish ASR BIGOS workspace
"""
def whisper_model_change(radio_whisper_model):
whisper_model = whisper.load_model(radio_whisper_model)
return(whisper_model)
def prompt_gpt(input_text):
messages = [
{"role": "system", "content": "You are a helpful assistant."}]
if input_text:
messages.append(
{"role": "user", "content": input_text},
)
chat_completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=messages
)
reply = chat_completion.choices[0].message.content
return reply
def process_pipeline(audio):
asr_out = transcribe(audio)
gpt_out = prompt_gpt(asr_out)
tts_out = synthesize_speech(gpt_out)
return(tts_out)
def transcribe(audio, language, whisper_model, whisper_model_type):
if not whisper_model:
whisper_model=init_whisper_model(whisper_model_type)
print(f"Transcribing {audio} for language {language} and model {whisper_model_type}")
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio)
options = whisper.DecodingOptions(language=language, without_timestamps=True, fp16=False)
result = whisper.decode(whisper_model, mel, options)
result_text = result.text
return result_text
def init_whisper_model(whisper_model_type):
print("Initializing whisper model")
print(whisper_model_type)
whisper_model = whisper.load_model(whisper_model_type)
return whisper_model
def synthesize_speech(text):
audioobj = gTTS(text = out_result,
lang = lang,
slow = False)
audioobj.save("Temp.mp3")
return("Temp.mp3")
block = gr.Blocks(css=css_file)
with block:
#state variables
language = gr.State("en")
whisper_model_type = gr.State("base")
whisper_model = gr.State()
# state handling functions
def change_language(choice):
if choice == "Polish":
language="pl"
print("Switching to Polish")
print("language")
print(language)
elif choice == "English":
language="en"
print("Switching to English")
print("language")
print(language)
return(language)
def change_whisper_model(choice):
whisper_model_type = choice
print("Switching Whisper model")
print(whisper_model_type)
whisper_model = init_whisper_model(whisper_model_type)
return [whisper_model_type, whisper_model]
gr.Markdown(markdown)
with gr.Tabs():
with gr.TabItem('Voicebot playground'):
with gr.Box():
gr.HTML("<p class=\"apikey\">API Key:</p>")
# API key textbox (password-style)
api_key = gr.Textbox(label="", elem_id="pw")
radio_lang = gr.Radio(["Polish", "English"], label="Language", info="If none selected, English is used")
#radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money")
#radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service")
radio_whisper_model = gr.Radio(["tiny", "base", "small", "medium", "large"], label="Whisper ASR model (local)", info="Larger models are better, but slower. Default - base")
mic_recording = gr.Audio(source="microphone", type="filepath", label='Record your voice')
out_asr = gr.Textbox(placeholder="ASR output",
lines=5,
max_lines=10,
show_label=False)
out_gpt = gr.Textbox(placeholder="ChatGPT output",
lines=10,
max_lines=25,
show_label=False)
button_transcribe = gr.Button("Transcribe")
button_prompt_gpt = gr.Button("Prompt ChatGPT")
button_transcribe.click(transcribe, inputs=[mic_recording,language, whisper_model,whisper_model_type], outputs=out_asr)
button_prompt_gpt.click(prompt_gpt, inputs=out_asr, outputs=out_gpt)
radio_lang.change(fn=change_language, inputs=radio_lang, outputs=language)
radio_whisper_model.change(fn=change_whisper_model, inputs=radio_whisper_model, outputs=[whisper_model_type, whisper_model])
block.launch() |