File size: 4,764 Bytes
3b07c2b
0587641
81fdfb6
0587641
3b07c2b
 
 
 
81fdfb6
 
 
 
 
 
0587641
 
 
81fdfb6
0587641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fdfb6
 
0587641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fdfb6
 
 
0587641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fdfb6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import whisper
import numpy as np
import openai

def greet(name):
    return "Hello " + name + "!!"

with open('app.css','r') as f:
    css_file = f.read() 

markdown="""
# Polish ASR BIGOS workspace
"""
def whisper_model_change(radio_whisper_model):
    whisper_model = whisper.load_model(radio_whisper_model)
    return(whisper_model)

def prompt_gpt(input_text):
    messages = [
    {"role": "system", "content": "You are a helpful assistant."}]
    
    if input_text:
        messages.append(
            {"role": "user", "content": input_text},
        )
        chat_completion = openai.ChatCompletion.create(
            model="gpt-3.5-turbo", messages=messages
        )
    
    reply = chat_completion.choices[0].message.content
    return reply

def process_pipeline(audio):
    asr_out = transcribe(audio)
    gpt_out = prompt_gpt(asr_out)
    tts_out = synthesize_speech(gpt_out)
    return(tts_out)

def transcribe(audio, language, whisper_model, whisper_model_type):
    if not whisper_model:
        whisper_model=init_whisper_model(whisper_model_type)
    
    print(f"Transcribing {audio} for language {language} and model {whisper_model_type}")
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    mel = whisper.log_mel_spectrogram(audio)

    options = whisper.DecodingOptions(language=language, without_timestamps=True, fp16=False)
    result = whisper.decode(whisper_model, mel, options)
    result_text = result.text
    return result_text

def init_whisper_model(whisper_model_type):
    print("Initializing whisper model")
    print(whisper_model_type)
    whisper_model = whisper.load_model(whisper_model_type)
    return whisper_model

def synthesize_speech(text):    
    audioobj = gTTS(text = out_result, 
                    lang = lang, 
                    slow = False)
    
    audioobj.save("Temp.mp3")
    return("Temp.mp3")
    
block = gr.Blocks(css=css_file)
with block:

    #state variables
    language = gr.State("en")
    whisper_model_type = gr.State("base")
    whisper_model = gr.State()

    # state handling functions
    def change_language(choice):
        if choice == "Polish":
            language="pl"
            print("Switching to Polish")
            print("language")
            print(language)
        elif choice == "English":
            language="en"
            print("Switching to English")
            print("language")
            print(language)
        return(language)
    
    def change_whisper_model(choice):
        whisper_model_type = choice
        print("Switching Whisper model")
        print(whisper_model_type)
        whisper_model = init_whisper_model(whisper_model_type)
        return [whisper_model_type, whisper_model]

    gr.Markdown(markdown)
    with gr.Tabs():
        with gr.TabItem('Voicebot playground'):
            with gr.Box():
                gr.HTML("<p class=\"apikey\">API Key:</p>")
                # API key textbox (password-style)
                api_key = gr.Textbox(label="", elem_id="pw")
        
            radio_lang = gr.Radio(["Polish", "English"], label="Language", info="If none selected, English is used")
            #radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money")
            #radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service")
            radio_whisper_model = gr.Radio(["tiny", "base", "small", "medium", "large"], label="Whisper ASR model (local)", info="Larger models are better, but slower. Default - base")

            mic_recording = gr.Audio(source="microphone", type="filepath", label='Record your voice')

            out_asr = gr.Textbox(placeholder="ASR output",
                               lines=5,
                               max_lines=10,
                               show_label=False)
            out_gpt = gr.Textbox(placeholder="ChatGPT output",
                               lines=10,
                               max_lines=25,
                               show_label=False)
    
            button_transcribe = gr.Button("Transcribe")
            button_prompt_gpt = gr.Button("Prompt ChatGPT")
            
            button_transcribe.click(transcribe, inputs=[mic_recording,language, whisper_model,whisper_model_type], outputs=out_asr)
            button_prompt_gpt.click(prompt_gpt, inputs=out_asr, outputs=out_gpt)

            radio_lang.change(fn=change_language, inputs=radio_lang, outputs=language)
            radio_whisper_model.change(fn=change_whisper_model, inputs=radio_whisper_model, outputs=[whisper_model_type, whisper_model])

block.launch()