File size: 9,598 Bytes
3b07c2b
0587641
81fdfb6
0587641
0147fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b07c2b
 
 
 
81fdfb6
 
 
 
 
 
0147fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0587641
 
 
81fdfb6
0147fc2
 
 
 
 
 
 
 
0587641
0147fc2
0587641
 
 
 
 
0147fc2
0587641
0147fc2
 
 
0587641
 
 
0147fc2
0587641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0147fc2
 
 
0587641
 
 
 
 
81fdfb6
 
0587641
 
 
0147fc2
0587641
 
0147fc2
 
0587641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fdfb6
0147fc2
81fdfb6
0147fc2
 
 
 
 
 
 
 
 
 
 
0587641
0147fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0587641
0147fc2
 
81fdfb6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gradio as gr
import whisper
import numpy as np
import openai
import os
from gtts import gTTS
import json
import hashlib
import random
import string
import uuid
from datetime import date,datetime
from huggingface_hub import Repository, upload_file
import shutil

HF_TOKEN_WRITE = os.environ.get("HF_TOKEN_WRITE")
print("HF_TOKEN_WRITE", HF_TOKEN_WRITE)
today = date.today()
today_ymd = today.strftime("%Y%m%d")

def greet(name):
    return "Hello " + name + "!!"

with open('app.css','r') as f:
    css_file = f.read() 

markdown="""
# Polish ASR BIGOS workspace
"""

# TODO move to config 
WORKING_DATASET_REPO_URL = "https://huggingface.co/datasets/goodmike31/working-db"
REPO_NAME = "goodmike31/working-db"
REPOSITORY_DIR = "data"
LOCAL_DIR = "data_local"
os.makedirs(LOCAL_DIR,exist_ok=True)

def dump_json(thing,file):
    with open(file,'w+',encoding="utf8") as f:
        json.dump(thing,f)

def get_unique_name():
    return ''.join([random.choice(string.ascii_letters
            + string.digits) for n in range(32)])

def save_recording_and_meta(project_name, recording, transcript, language):
    #, name, age, gender):
    # TODO save user data in the next version

    speaker_metadata={}
    speaker_metadata['gender'] = "test" #gender if gender!=GENDER[0] else ''
    speaker_metadata['age'] = "test" #age if age !='' else ''
    speaker_metadata['accent'] = "test" #accent if accent!='' else ''
    
    lang_id = language.lower()

    # TODO get ISO-693-1 codes
    transcript =transcript.strip()
            
    SAVE_ROOT_DIR = os.path.join(LOCAL_DIR, project_name, today_ymd)

    SAVE_DIR_AUDIO = os.path.join(SAVE_ROOT_DIR, "audio")
    SAVE_DIR_META = os.path.join(SAVE_ROOT_DIR, "meta")
    os.makedirs(SAVE_DIR_AUDIO, exist_ok=True)
    os.makedirs(SAVE_DIR_META, exist_ok=True)

    # Write audio to file
    #audio_name = get_unique_name()
    
    uuid_name = str(uuid.uuid4())
    audio_fn = uuid_name + ".wav"
    audio_output_fp = os.path.join(SAVE_DIR_AUDIO, audio_fn)

    print (f"Saving {recording} as {audio_output_fp}")
    shutil.copy2(recording, audio_output_fp)

    # Write metadata.json to file
    meta_fn = uuid_name + 'metadata.jsonl'
    json_file_path = os.path.join(SAVE_DIR_META, meta_fn)

    now = datetime.now()
    timestamp_str = now.strftime("%d/%m/%Y %H:%M:%S")
    metadata= {'id':uuid_name,'audio_file': audio_fn,
        'language_name':language,'language_id':lang_id,
        'transcript':transcript,'age': speaker_metadata['age'],
        'gender': speaker_metadata['gender'],'accent': speaker_metadata['accent'],
        "date":today_ymd, "timestamp": timestamp_str }
            
    dump_json(metadata, json_file_path)  
                
    # Simply upload the audio file and metadata using the hub's upload_file
    # Upload the audio
    repo_audio_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "audio", audio_fn)
            
    _ = upload_file(path_or_fileobj = audio_output_fp,
                        path_in_repo = repo_audio_path,
                        repo_id = REPO_NAME,
                        repo_type = 'dataset',
                        token = HF_TOKEN_WRITE
                    ) 

            # Upload the metadata
    repo_json_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "meta", meta_fn)
    _ = upload_file(path_or_fileobj = json_file_path,
                        path_in_repo = repo_json_path,
                        repo_id = REPO_NAME,
                        repo_type = 'dataset',
                        token = HF_TOKEN_WRITE
                    )        
            
    output = print(f"Recording {audio_fn} and meta file {meta_fn} successfully saved to repo!")
    return 

def whisper_model_change(radio_whisper_model):
    whisper_model = whisper.load_model(radio_whisper_model)
    return(whisper_model)

def prompt_gpt(input_text, api_key, temperature):
    #, role, template_prompt, template_answer):
    #TODO add option to specify instruction
    openai.api_key = api_key
    
    #TODO add specific message for specific role
    system_role_message="You are a helpful assistant"

    messages = [
    {"role": "system", "content": system_role_message}]
    
    if input_text:
        messages.append(
            {"role": "user", "content": input_text},
        )
        
        chat_completion = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            temperature=temperature
        )
    
    reply = chat_completion.choices[0].message.content
    #TODO save chat completion for future reuse
    return reply

def process_pipeline(audio):
    asr_out = transcribe(audio)
    gpt_out = prompt_gpt(asr_out)
    tts_out = synthesize_speech(gpt_out)
    return(tts_out)

def transcribe(audio, language, whisper_model, whisper_model_type):
    if not whisper_model:
        whisper_model=init_whisper_model(whisper_model_type)
    
    print(f"Transcribing {audio} for language {language} and model {whisper_model_type}")
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    mel = whisper.log_mel_spectrogram(audio)

    options = whisper.DecodingOptions(language=language, without_timestamps=True, fp16=False)
    result = whisper.decode(whisper_model, mel, options)
    result_text = result.text
    return result_text

def init_whisper_model(whisper_model_type):
    print("Initializing whisper model")
    print(whisper_model_type)
    whisper_model = whisper.load_model(whisper_model_type)
    return whisper_model

def synthesize_speech(text, language):    
    audioobj = gTTS(text = text, 
                    lang = language, 
                    slow = False)
    
    audioobj.save("Temp.mp3")
    return("Temp.mp3")
    
block = gr.Blocks(css=css_file)
with block:

    #state variables
    language = gr.State("en")
    temperature = gr.State(0)
    whisper_model_type = gr.State("base")
    whisper_model = gr.State()
    api_key = gr.State()
    project_name = gr.State("voicebot") # TODO add list of projects to organize saved data

    # state handling functions
    def change_language(choice):
        if choice == "Polish":
            language="pl"
            print("Switching to Polish")
            print("language")
            print(language)
        elif choice == "English":
            language="en"
            print("Switching to English")
            print("language")
            print(language)
        return(language)
    
    def change_whisper_model(choice):
        whisper_model_type = choice
        print("Switching Whisper model")
        print(whisper_model_type)
        whisper_model = init_whisper_model(whisper_model_type)
        return [whisper_model_type, whisper_model]

    gr.Markdown(markdown)

    with gr.Tabs():
        with gr.Row():
            with gr.TabItem('Voicebot playground'):
                with gr.Accordion(label="Settings"):
                    gr.HTML("<p class=\"apikey\">Open AI API Key:</p>")
                    # API key textbox (password-style)
                    api_key = gr.Textbox(label="", elem_id="pw")
                    slider_temp = gr.Slider(minimum=0, maximum= 2, step=0.2, label="ChatGPT temperature")
                    radio_lang = gr.Radio(["Polish", "English"], label="Language", info="If none selected, English is used")
                    #radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money")
                    #radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service")
                    radio_whisper_model = gr.Radio(["tiny", "base", "small", "medium", "large"], label="Whisper ASR model (local)", info="Larger models are more accurate, but slower. Default - base")
            with gr.Box():
                with gr.Row():
                    mic_recording = gr.Audio(source="microphone", type="filepath", label='Record your voice')

                    button_transcribe = gr.Button("Transcribe speech")

                    button_save_audio_and_trans = gr.Button("Save recording and meta")

                out_asr = gr.Textbox(placeholder="ASR output",
                                lines=2,
                                max_lines=5,
                                show_label=False)
                
                button_prompt_gpt = gr.Button("Prompt ChatGPT")

                out_gpt = gr.Textbox(placeholder="ChatGPT output",
                                lines=4,
                                max_lines=10,
                                show_label=False)
                button_synth_speech = gr.Button("Synthesize speech")
                synth_recording = gr.Audio()

                # Events actions
                button_save_audio_and_trans.click(save_recording_and_meta, inputs=[project_name, mic_recording, out_asr, language], outputs=[])
                button_transcribe.click(transcribe, inputs=[mic_recording, language, whisper_model,whisper_model_type], outputs=out_asr)
                button_prompt_gpt.click(prompt_gpt, inputs=[out_asr, api_key, slider_temp], outputs=out_gpt)
                button_synth_speech.click(synthesize_speech, inputs=[out_gpt, language], outputs=synth_recording)

                radio_lang.change(fn=change_language, inputs=radio_lang, outputs=language)
                radio_whisper_model.change(fn=change_whisper_model, inputs=radio_whisper_model, outputs=[whisper_model_type, whisper_model])

block.launch()