File size: 3,811 Bytes
f3f28d3
 
 
 
 
 
aca4b77
f3f28d3
 
aca4b77
f3f28d3
 
 
 
 
 
 
 
0faef57
7e86f55
aca4b77
ccb7c0b
 
aca4b77
f3f28d3
 
 
 
 
 
 
aca4b77
f3f28d3
 
012fbfa
 
9a7b1fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012fbfa
f3f28d3
012fbfa
f3f28d3
 
9a7b1fe
012fbfa
 
f3f28d3
 
9a7b1fe
 
 
 
b3760ba
 
 
9a7b1fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f28d3
b3760ba
f3f28d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

import os
import json
import numpy as np
import torch
import soundfile as sf
import gradio as gr
from diffusers import DDPMScheduler
from pico_model import PicoDiffusion, build_pretrained_models
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL

class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

class InferRunner:
    def __init__(self, device):
        vae_config = json.load(open("ckpts/ldm/vae_config.json"))
        self.vae = AutoencoderKL(**vae_config).to(device)
        vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin", map_location=device)
        self.vae.load_state_dict(vae_weights)

        train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
        self.pico_model = PicoDiffusion(
            scheduler_name=train_args.scheduler_name, 
            unet_model_config_path=train_args.unet_model_config, 
            snr_gamma=train_args.snr_gamma,
            freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
            diffusion_pt="ckpts/pico_model/diffusion.pt",
        ).eval().to(device)
        self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")

device = "cuda" if torch.cuda.is_available() else "cpu"
runner = InferRunner(device)
event_list = [
            "burping_belching",             # 0
            "car_horn_honking",             #
            "cat_meowing",                  #    
            "cow_mooing",                   #
            "dog_barking",                  #  
            "door_knocking",                #
            "door_slamming",                #
            "explosion",                    #  
            "gunshot",                      # 8
            "sheep_goat_bleating",          #
            "sneeze",                       #
            "spraying",                     # 
            "thump_thud",                   #   
            "train_horn",                   #
            "tapping_clicking_clanking",    #
            "woman_laughing",               #         
            "duck_quacking",                # 16   
            "whistling",                    #    
        ]
def infer(caption, num_steps=200, guidance_scale=3.0, audio_len=16000*10):
    with torch.no_grad():
        latents = runner.pico_model.demo_inference(caption, runner.scheduler, num_steps=num_steps, guidance_scale=guidance_scale, num_samples_per_prompt=1, disable_progress=True)
        mel = runner.vae.decode_first_stage(latents)
        wave = runner.vae.decode_to_waveform(mel)[0][:audio_len]
    outpath = f"output.wav"
    sf.write(outpath, wave, samplerate=16000, subtype='PCM_16')
    return outpath


gr.Markdown("## PicoAudio")
gr.Markdown("18 events: " + ", ".join(event_list))
prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.",
    value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",)
outaudio = gr.Audio()
num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1)
guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1)    


gr_interface = gr.Interface(
    fn=infer,
    inputs=[prompt, num_steps, guidance_scale], 
    outputs=[outaudio],
    # title="
    allow_flagging=False,
    examples=[
        ["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."],
        ["dog_barking at 0.562-2.562_4.25-6.25."],
        ["cow_mooing at 0.958-3.582_5.272-7.896."],
    ],
    cache_examples="lazy", # Turn on to cache.
)
    
gr_interface.queue(10).launch()