DeepfakeDetection / dataset.py
wli3221134's picture
Upload 3 files
b82b421 verified
raw
history blame contribute delete
920 Bytes
from torch.utils.data import Dataset
import librosa
import numpy as np
from torch import Tensor
def pad(x, max_len=64600, random_clip=True):
x_len = x.shape[0]
if x_len > max_len:
# random clip
if random_clip:
start_idx = np.random.randint(0, x_len - max_len)
return x[start_idx:start_idx + max_len]
else:
return x[:max_len]
# need to pad
num_repeats = int(max_len / x_len)+1
padded_x = np.tile(x, (1, num_repeats))[:, :max_len][0]
return padded_x
class DemoDataset(Dataset):
def __init__(self, path):
self.path = path
def __len__(self):
return 1
def __getitem__(self, idx):
waveform, sample_rate = librosa.load(self.path, sr=16000)
waveform_pad = pad(waveform)
waveform_tensor = Tensor(waveform_pad)
return {
'waveforms': waveform_tensor,
}