import gradio as gr import torch from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from huggingface_hub import login import os import spaces # Log in to Hugging Face with your token token = os.getenv("HF_TOKEN") login(token=token) # Model IDs for Stable Diffusion 1.5 and ControlNet model_id = "runwayml/stable-diffusion-v1-5" # Compatible with ControlNet controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" # Load the ControlNet model and Stable Diffusion pipeline controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( model_id, controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") @spaces.GPU def generate_image(prompt, reference_image): # Prepare the reference image for ControlNet reference_image = reference_image.convert("RGB").resize((512, 512)) # Generate the image with ControlNet conditioning generated_image = pipe( prompt=prompt, image=reference_image, controlnet_conditioning_scale=1.0, guidance_scale=7.5, num_inference_steps=50 ).images[0] return generated_image # Set up Gradio interface interface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt"), gr.Image(type="pil", label="Reference Image (Style)") ], outputs="image", title="Image Generation with Stable Diffusion 1.5 and ControlNet", description="Generates an image based on a text prompt and a reference image using Stable Diffusion 1.5 with ControlNet." ) # Launch the Gradio interface interface.launch()