# Copyright (c) 2022 Caroline Chan # # MIT License import torch.nn as nn from ...modeling_utils import ModelMixin norm_layer = nn.InstanceNorm2d class ResidualBlock(nn.Module): def __init__(self, in_features: int): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class Generator(ModelMixin): def __init__(self, input_nc: int = 3, output_nc: int = 1, n_residual_blocks: int = 3, sigmoid: bool = True): super(Generator, self).__init__() # Initial convolution block model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True)] self.model0 = nn.Sequential(*model0) # Downsampling model1 = [] in_features = 64 out_features = in_features * 2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True), ] in_features = out_features out_features = in_features * 2 self.model1 = nn.Sequential(*model1) model2 = [] # Residual blocks for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # Upsampling model3 = [] out_features = in_features // 2 for _ in range(2): model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True), ] in_features = out_features out_features = in_features // 2 self.model3 = nn.Sequential(*model3) # Output layer model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x): out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out