Spaces:
Paused
Paused
uuu
Browse files
app.py
CHANGED
@@ -27,10 +27,26 @@ token = os.getenv("HF_TOKEN")
|
|
27 |
login(token=token)
|
28 |
|
29 |
# Model and Pipeline Setup
|
|
|
30 |
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
31 |
ip_adapter_path = './ip-adapter.bin'
|
32 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Load transformer and pipeline
|
35 |
transformer = SD3Transformer2DModel.from_pretrained(
|
36 |
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
@@ -48,22 +64,23 @@ pipe.init_ipadapter(
|
|
48 |
|
49 |
|
50 |
@spaces.GPU
|
51 |
-
def gui_generation(
|
52 |
"""
|
53 |
Generate images using Stable Diffusion 3.5
|
54 |
"""
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
num_images_per_prompt=num_imgs,
|
60 |
negative_prompt="lowres, low quality, worst quality",
|
61 |
num_inference_steps=24,
|
62 |
guidance_scale=5.0,
|
63 |
generator=torch.Generator("cuda").manual_seed(42),
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
return
|
67 |
|
68 |
|
69 |
# Create Gradio interface
|
@@ -72,19 +89,16 @@ with gr.Blocks() as demo:
|
|
72 |
|
73 |
with gr.Row():
|
74 |
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your image generation prompt")
|
75 |
-
number_slider = gr.Slider(1, 30, value=2, step=1, label="Batch size")
|
76 |
|
77 |
with gr.Row():
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
gallery = gr.Gallery(columns=[3], rows=[1], object_fit="contain", height="auto")
|
82 |
|
83 |
generate_btn = gr.Button("Generate")
|
84 |
|
85 |
generate_btn.click(
|
86 |
fn=gui_generation,
|
87 |
-
inputs=[prompt_box,
|
88 |
outputs=gallery
|
89 |
)
|
90 |
demo.launch()
|
|
|
27 |
login(token=token)
|
28 |
|
29 |
# Model and Pipeline Setup
|
30 |
+
|
31 |
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
32 |
ip_adapter_path = './ip-adapter.bin'
|
33 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
34 |
|
35 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
36 |
+
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
37 |
+
)
|
38 |
+
|
39 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
40 |
+
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
41 |
+
).to("cuda")
|
42 |
+
|
43 |
+
pipe.init_ipadapter(
|
44 |
+
ip_adapter_path=ip_adapter_path,
|
45 |
+
image_encoder_path=image_encoder_path,
|
46 |
+
nb_token=64,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
# Load transformer and pipeline
|
51 |
transformer = SD3Transformer2DModel.from_pretrained(
|
52 |
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
|
|
64 |
|
65 |
|
66 |
@spaces.GPU
|
67 |
+
def gui_generation(prompt, ref_img):
|
68 |
"""
|
69 |
Generate images using Stable Diffusion 3.5
|
70 |
"""
|
71 |
+
image = pipe(
|
72 |
+
width=1024,
|
73 |
+
height=1024,
|
74 |
+
prompt=prompt,
|
|
|
75 |
negative_prompt="lowres, low quality, worst quality",
|
76 |
num_inference_steps=24,
|
77 |
guidance_scale=5.0,
|
78 |
generator=torch.Generator("cuda").manual_seed(42),
|
79 |
+
clip_image=ref_img,
|
80 |
+
ipadapter_scale=0.5,
|
81 |
+
).images[0]
|
82 |
|
83 |
+
return image
|
84 |
|
85 |
|
86 |
# Create Gradio interface
|
|
|
89 |
|
90 |
with gr.Row():
|
91 |
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your image generation prompt")
|
|
|
92 |
|
93 |
with gr.Row():
|
94 |
+
ref_img = gr.Image(type="pil", label="Upload Reference Image")
|
95 |
+
gallery = gr.Image(type="pil", label="Generated Image")
|
|
|
|
|
96 |
|
97 |
generate_btn = gr.Button("Generate")
|
98 |
|
99 |
generate_btn.click(
|
100 |
fn=gui_generation,
|
101 |
+
inputs=[prompt_box, ref_img],
|
102 |
outputs=gallery
|
103 |
)
|
104 |
demo.launch()
|