Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -143,14 +143,12 @@ This way, each frame represents a distinct scene, and there’s no redundancy be
|
|
143 |
frames = ask_gpt(massage_history,return_str=False)['frames']
|
144 |
conditioning_frames = []
|
145 |
controlnet_frame_indices =[]
|
146 |
-
long_prompt = {}
|
147 |
for frame in frames:
|
148 |
conditioning_frames.append(generate_image(frame['description'], reference_image, float(controlnet_conditioning_scale)))
|
149 |
controlnet_frame_indices.append(frame['frame_index'])
|
150 |
-
long_prompt[frame['frame_index']] = frame['description']
|
151 |
|
152 |
video = gif_pipe(
|
153 |
-
prompt=
|
154 |
negative_prompt="low quality, worst quality",
|
155 |
num_inference_steps=25,
|
156 |
conditioning_frames=conditioning_frames,
|
|
|
143 |
frames = ask_gpt(massage_history,return_str=False)['frames']
|
144 |
conditioning_frames = []
|
145 |
controlnet_frame_indices =[]
|
|
|
146 |
for frame in frames:
|
147 |
conditioning_frames.append(generate_image(frame['description'], reference_image, float(controlnet_conditioning_scale)))
|
148 |
controlnet_frame_indices.append(frame['frame_index'])
|
|
|
149 |
|
150 |
video = gif_pipe(
|
151 |
+
prompt=prompt,
|
152 |
negative_prompt="low quality, worst quality",
|
153 |
num_inference_steps=25,
|
154 |
conditioning_frames=conditioning_frames,
|